Metamath Proof Explorer


Definition df-om1

Description: Define the loop space of a topological space, with a magma structure on it given by concatenation of loops. This structure is not a group, but the operation is compatible with homotopy, which allows the homotopy groups to be defined based on this operation. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Assertion df-om1 Ω 1 = j Top , y j Base ndx f II Cn j | f 0 = y f 1 = y + ndx * 𝑝 j TopSet ndx j ^ ko II

Detailed syntax breakdown

Step Hyp Ref Expression
0 comi class Ω 1
1 vj setvar j
2 ctop class Top
3 vy setvar y
4 1 cv setvar j
5 4 cuni class j
6 cbs class Base
7 cnx class ndx
8 7 6 cfv class Base ndx
9 vf setvar f
10 cii class II
11 ccn class Cn
12 10 4 11 co class II Cn j
13 9 cv setvar f
14 cc0 class 0
15 14 13 cfv class f 0
16 3 cv setvar y
17 15 16 wceq wff f 0 = y
18 c1 class 1
19 18 13 cfv class f 1
20 19 16 wceq wff f 1 = y
21 17 20 wa wff f 0 = y f 1 = y
22 21 9 12 crab class f II Cn j | f 0 = y f 1 = y
23 8 22 cop class Base ndx f II Cn j | f 0 = y f 1 = y
24 cplusg class + 𝑔
25 7 24 cfv class + ndx
26 cpco class * 𝑝
27 4 26 cfv class * 𝑝 j
28 25 27 cop class + ndx * 𝑝 j
29 cts class TopSet
30 7 29 cfv class TopSet ndx
31 cxko class ^ ko
32 4 10 31 co class j ^ ko II
33 30 32 cop class TopSet ndx j ^ ko II
34 23 28 33 ctp class Base ndx f II Cn j | f 0 = y f 1 = y + ndx * 𝑝 j TopSet ndx j ^ ko II
35 1 3 2 5 34 cmpo class j Top , y j Base ndx f II Cn j | f 0 = y f 1 = y + ndx * 𝑝 j TopSet ndx j ^ ko II
36 0 35 wceq wff Ω 1 = j Top , y j Base ndx f II Cn j | f 0 = y f 1 = y + ndx * 𝑝 j TopSet ndx j ^ ko II