Metamath Proof Explorer


Definition df-phtpc

Description: Define the function which takes a topology and returns the path homotopy relation on that topology. Definition of Hatcher p. 25. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 7-Jun-2014)

Ref Expression
Assertion df-phtpc
|- ~=ph = ( x e. Top |-> { <. f , g >. | ( { f , g } C_ ( II Cn x ) /\ ( f ( PHtpy ` x ) g ) =/= (/) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cphtpc
 |-  ~=ph
1 vx
 |-  x
2 ctop
 |-  Top
3 vf
 |-  f
4 vg
 |-  g
5 3 cv
 |-  f
6 4 cv
 |-  g
7 5 6 cpr
 |-  { f , g }
8 cii
 |-  II
9 ccn
 |-  Cn
10 1 cv
 |-  x
11 8 10 9 co
 |-  ( II Cn x )
12 7 11 wss
 |-  { f , g } C_ ( II Cn x )
13 cphtpy
 |-  PHtpy
14 10 13 cfv
 |-  ( PHtpy ` x )
15 5 6 14 co
 |-  ( f ( PHtpy ` x ) g )
16 c0
 |-  (/)
17 15 16 wne
 |-  ( f ( PHtpy ` x ) g ) =/= (/)
18 12 17 wa
 |-  ( { f , g } C_ ( II Cn x ) /\ ( f ( PHtpy ` x ) g ) =/= (/) )
19 18 3 4 copab
 |-  { <. f , g >. | ( { f , g } C_ ( II Cn x ) /\ ( f ( PHtpy ` x ) g ) =/= (/) ) }
20 1 2 19 cmpt
 |-  ( x e. Top |-> { <. f , g >. | ( { f , g } C_ ( II Cn x ) /\ ( f ( PHtpy ` x ) g ) =/= (/) ) } )
21 0 20 wceq
 |-  ~=ph = ( x e. Top |-> { <. f , g >. | ( { f , g } C_ ( II Cn x ) /\ ( f ( PHtpy ` x ) g ) =/= (/) ) } )