| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cphtpc |
|- ~=ph |
| 1 |
|
vx |
|- x |
| 2 |
|
ctop |
|- Top |
| 3 |
|
vf |
|- f |
| 4 |
|
vg |
|- g |
| 5 |
3
|
cv |
|- f |
| 6 |
4
|
cv |
|- g |
| 7 |
5 6
|
cpr |
|- { f , g } |
| 8 |
|
cii |
|- II |
| 9 |
|
ccn |
|- Cn |
| 10 |
1
|
cv |
|- x |
| 11 |
8 10 9
|
co |
|- ( II Cn x ) |
| 12 |
7 11
|
wss |
|- { f , g } C_ ( II Cn x ) |
| 13 |
|
cphtpy |
|- PHtpy |
| 14 |
10 13
|
cfv |
|- ( PHtpy ` x ) |
| 15 |
5 6 14
|
co |
|- ( f ( PHtpy ` x ) g ) |
| 16 |
|
c0 |
|- (/) |
| 17 |
15 16
|
wne |
|- ( f ( PHtpy ` x ) g ) =/= (/) |
| 18 |
12 17
|
wa |
|- ( { f , g } C_ ( II Cn x ) /\ ( f ( PHtpy ` x ) g ) =/= (/) ) |
| 19 |
18 3 4
|
copab |
|- { <. f , g >. | ( { f , g } C_ ( II Cn x ) /\ ( f ( PHtpy ` x ) g ) =/= (/) ) } |
| 20 |
1 2 19
|
cmpt |
|- ( x e. Top |-> { <. f , g >. | ( { f , g } C_ ( II Cn x ) /\ ( f ( PHtpy ` x ) g ) =/= (/) ) } ) |
| 21 |
0 20
|
wceq |
|- ~=ph = ( x e. Top |-> { <. f , g >. | ( { f , g } C_ ( II Cn x ) /\ ( f ( PHtpy ` x ) g ) =/= (/) ) } ) |