Metamath Proof Explorer


Definition df-phtpc

Description: Define the function which takes a topology and returns the path homotopy relation on that topology. Definition of Hatcher p. 25. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 7-Jun-2014)

Ref Expression
Assertion df-phtpc ph = ( 𝑥 ∈ Top ↦ { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑥 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) ≠ ∅ ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cphtpc ph
1 vx 𝑥
2 ctop Top
3 vf 𝑓
4 vg 𝑔
5 3 cv 𝑓
6 4 cv 𝑔
7 5 6 cpr { 𝑓 , 𝑔 }
8 cii II
9 ccn Cn
10 1 cv 𝑥
11 8 10 9 co ( II Cn 𝑥 )
12 7 11 wss { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑥 )
13 cphtpy PHtpy
14 10 13 cfv ( PHtpy ‘ 𝑥 )
15 5 6 14 co ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 )
16 c0
17 15 16 wne ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) ≠ ∅
18 12 17 wa ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑥 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) ≠ ∅ )
19 18 3 4 copab { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑥 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) ≠ ∅ ) }
20 1 2 19 cmpt ( 𝑥 ∈ Top ↦ { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑥 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) ≠ ∅ ) } )
21 0 20 wceq ph = ( 𝑥 ∈ Top ↦ { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑥 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) ≠ ∅ ) } )