Step |
Hyp |
Ref |
Expression |
0 |
|
cphtpc |
⊢ ≃ph |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
ctop |
⊢ Top |
3 |
|
vf |
⊢ 𝑓 |
4 |
|
vg |
⊢ 𝑔 |
5 |
3
|
cv |
⊢ 𝑓 |
6 |
4
|
cv |
⊢ 𝑔 |
7 |
5 6
|
cpr |
⊢ { 𝑓 , 𝑔 } |
8 |
|
cii |
⊢ II |
9 |
|
ccn |
⊢ Cn |
10 |
1
|
cv |
⊢ 𝑥 |
11 |
8 10 9
|
co |
⊢ ( II Cn 𝑥 ) |
12 |
7 11
|
wss |
⊢ { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑥 ) |
13 |
|
cphtpy |
⊢ PHtpy |
14 |
10 13
|
cfv |
⊢ ( PHtpy ‘ 𝑥 ) |
15 |
5 6 14
|
co |
⊢ ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) |
16 |
|
c0 |
⊢ ∅ |
17 |
15 16
|
wne |
⊢ ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) ≠ ∅ |
18 |
12 17
|
wa |
⊢ ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑥 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) ≠ ∅ ) |
19 |
18 3 4
|
copab |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑥 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) ≠ ∅ ) } |
20 |
1 2 19
|
cmpt |
⊢ ( 𝑥 ∈ Top ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑥 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) ≠ ∅ ) } ) |
21 |
0 20
|
wceq |
⊢ ≃ph = ( 𝑥 ∈ Top ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑥 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑥 ) 𝑔 ) ≠ ∅ ) } ) |