Metamath Proof Explorer


Definition df-pointsN

Description: Define set of all projective points in a Hilbert lattice (actually in any set at all, for simplicity). A projective point is the singleton of a lattice atom. Definition 15.1 of MaedaMaeda p. 61. Note that item 1 in Holland95 p. 222 defines a point as the atom itself, but this leads to a complicated subspace ordering that may be either membership or inclusion based on its arguments. (Contributed by NM, 2-Oct-2011)

Ref Expression
Assertion df-pointsN
|- Points = ( k e. _V |-> { q | E. p e. ( Atoms ` k ) q = { p } } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpointsN
 |-  Points
1 vk
 |-  k
2 cvv
 |-  _V
3 vq
 |-  q
4 vp
 |-  p
5 catm
 |-  Atoms
6 1 cv
 |-  k
7 6 5 cfv
 |-  ( Atoms ` k )
8 3 cv
 |-  q
9 4 cv
 |-  p
10 9 csn
 |-  { p }
11 8 10 wceq
 |-  q = { p }
12 11 4 7 wrex
 |-  E. p e. ( Atoms ` k ) q = { p }
13 12 3 cab
 |-  { q | E. p e. ( Atoms ` k ) q = { p } }
14 1 2 13 cmpt
 |-  ( k e. _V |-> { q | E. p e. ( Atoms ` k ) q = { p } } )
15 0 14 wceq
 |-  Points = ( k e. _V |-> { q | E. p e. ( Atoms ` k ) q = { p } } )