| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpsubsp |
|- PSubSp |
| 1 |
|
vk |
|- k |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vs |
|- s |
| 4 |
3
|
cv |
|- s |
| 5 |
|
catm |
|- Atoms |
| 6 |
1
|
cv |
|- k |
| 7 |
6 5
|
cfv |
|- ( Atoms ` k ) |
| 8 |
4 7
|
wss |
|- s C_ ( Atoms ` k ) |
| 9 |
|
vp |
|- p |
| 10 |
|
vq |
|- q |
| 11 |
|
vr |
|- r |
| 12 |
11
|
cv |
|- r |
| 13 |
|
cple |
|- le |
| 14 |
6 13
|
cfv |
|- ( le ` k ) |
| 15 |
9
|
cv |
|- p |
| 16 |
|
cjn |
|- join |
| 17 |
6 16
|
cfv |
|- ( join ` k ) |
| 18 |
10
|
cv |
|- q |
| 19 |
15 18 17
|
co |
|- ( p ( join ` k ) q ) |
| 20 |
12 19 14
|
wbr |
|- r ( le ` k ) ( p ( join ` k ) q ) |
| 21 |
12 4
|
wcel |
|- r e. s |
| 22 |
20 21
|
wi |
|- ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) |
| 23 |
22 11 7
|
wral |
|- A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) |
| 24 |
23 10 4
|
wral |
|- A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) |
| 25 |
24 9 4
|
wral |
|- A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) |
| 26 |
8 25
|
wa |
|- ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) |
| 27 |
26 3
|
cab |
|- { s | ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) } |
| 28 |
1 2 27
|
cmpt |
|- ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) } ) |
| 29 |
0 28
|
wceq |
|- PSubSp = ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ A. p e. s A. q e. s A. r e. ( Atoms ` k ) ( r ( le ` k ) ( p ( join ` k ) q ) -> r e. s ) ) } ) |