| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpsubsp |
⊢ PSubSp |
| 1 |
|
vk |
⊢ 𝑘 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vs |
⊢ 𝑠 |
| 4 |
3
|
cv |
⊢ 𝑠 |
| 5 |
|
catm |
⊢ Atoms |
| 6 |
1
|
cv |
⊢ 𝑘 |
| 7 |
6 5
|
cfv |
⊢ ( Atoms ‘ 𝑘 ) |
| 8 |
4 7
|
wss |
⊢ 𝑠 ⊆ ( Atoms ‘ 𝑘 ) |
| 9 |
|
vp |
⊢ 𝑝 |
| 10 |
|
vq |
⊢ 𝑞 |
| 11 |
|
vr |
⊢ 𝑟 |
| 12 |
11
|
cv |
⊢ 𝑟 |
| 13 |
|
cple |
⊢ le |
| 14 |
6 13
|
cfv |
⊢ ( le ‘ 𝑘 ) |
| 15 |
9
|
cv |
⊢ 𝑝 |
| 16 |
|
cjn |
⊢ join |
| 17 |
6 16
|
cfv |
⊢ ( join ‘ 𝑘 ) |
| 18 |
10
|
cv |
⊢ 𝑞 |
| 19 |
15 18 17
|
co |
⊢ ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) |
| 20 |
12 19 14
|
wbr |
⊢ 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) |
| 21 |
12 4
|
wcel |
⊢ 𝑟 ∈ 𝑠 |
| 22 |
20 21
|
wi |
⊢ ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) |
| 23 |
22 11 7
|
wral |
⊢ ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) |
| 24 |
23 10 4
|
wral |
⊢ ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) |
| 25 |
24 9 4
|
wral |
⊢ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) |
| 26 |
8 25
|
wa |
⊢ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) |
| 27 |
26 3
|
cab |
⊢ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } |
| 28 |
1 2 27
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |
| 29 |
0 28
|
wceq |
⊢ PSubSp = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ( 𝑠 ⊆ ( Atoms ‘ 𝑘 ) ∧ ∀ 𝑝 ∈ 𝑠 ∀ 𝑞 ∈ 𝑠 ∀ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑟 ( le ‘ 𝑘 ) ( 𝑝 ( join ‘ 𝑘 ) 𝑞 ) → 𝑟 ∈ 𝑠 ) ) } ) |