Metamath Proof Explorer


Definition df-prj

Description: Define the function that, for a set a , arity n , and index i , returns the i -th n -ary projection on a . This is the n -ary operation on a that, for any sequence of n elements of a , returns the element having index i . (Contributed by Adrian Ducourtial, 3-Apr-2025)

Ref Expression
Assertion df-prj
|- prj = ( a e. _V |-> ( n e. ( _om \ 1o ) , i e. n |-> ( x e. ( a ^m n ) |-> ( x ` i ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprj
 |-  prj
1 va
 |-  a
2 cvv
 |-  _V
3 vn
 |-  n
4 com
 |-  _om
5 c1o
 |-  1o
6 4 5 cdif
 |-  ( _om \ 1o )
7 vi
 |-  i
8 3 cv
 |-  n
9 vx
 |-  x
10 1 cv
 |-  a
11 cmap
 |-  ^m
12 10 8 11 co
 |-  ( a ^m n )
13 9 cv
 |-  x
14 7 cv
 |-  i
15 14 13 cfv
 |-  ( x ` i )
16 9 12 15 cmpt
 |-  ( x e. ( a ^m n ) |-> ( x ` i ) )
17 3 7 6 8 16 cmpo
 |-  ( n e. ( _om \ 1o ) , i e. n |-> ( x e. ( a ^m n ) |-> ( x ` i ) ) )
18 1 2 17 cmpt
 |-  ( a e. _V |-> ( n e. ( _om \ 1o ) , i e. n |-> ( x e. ( a ^m n ) |-> ( x ` i ) ) ) )
19 0 18 wceq
 |-  prj = ( a e. _V |-> ( n e. ( _om \ 1o ) , i e. n |-> ( x e. ( a ^m n ) |-> ( x ` i ) ) ) )