Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Adrian Ducourtial
Clone theory
df-prj
Metamath Proof Explorer
Description: Define the function that, for a set a , arity n , and index
i , returns the i -th n -ary projection on a . This is
the n -ary operation on a that, for any sequence of n
elements of a , returns the element having index i .
(Contributed by Adrian Ducourtial , 3-Apr-2025)
Ref
Expression
Assertion
df-prj
|- prj = ( a e. _V |-> ( n e. ( _om \ 1o ) , i e. n |-> ( x e. ( a ^m n ) |-> ( x ` i ) ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cprj
|- prj
1
va
|- a
2
cvv
|- _V
3
vn
|- n
4
com
|- _om
5
c1o
|- 1o
6
4 5
cdif
|- ( _om \ 1o )
7
vi
|- i
8
3
cv
|- n
9
vx
|- x
10
1
cv
|- a
11
cmap
|- ^m
12
10 8 11
co
|- ( a ^m n )
13
9
cv
|- x
14
7
cv
|- i
15
14 13
cfv
|- ( x ` i )
16
9 12 15
cmpt
|- ( x e. ( a ^m n ) |-> ( x ` i ) )
17
3 7 6 8 16
cmpo
|- ( n e. ( _om \ 1o ) , i e. n |-> ( x e. ( a ^m n ) |-> ( x ` i ) ) )
18
1 2 17
cmpt
|- ( a e. _V |-> ( n e. ( _om \ 1o ) , i e. n |-> ( x e. ( a ^m n ) |-> ( x ` i ) ) ) )
19
0 18
wceq
|- prj = ( a e. _V |-> ( n e. ( _om \ 1o ) , i e. n |-> ( x e. ( a ^m n ) |-> ( x ` i ) ) ) )