Metamath Proof Explorer


Definition df-prj

Description: Define the function that, for a set a , arity n , and index i , returns the i -th n -ary projection on a . This is the n -ary operation on a that, for any sequence of n elements of a , returns the element having index i . (Contributed by Adrian Ducourtial, 3-Apr-2025)

Ref Expression
Assertion df-prj prj = ( 𝑎 ∈ V ↦ ( 𝑛 ∈ ( ω ∖ 1o ) , 𝑖𝑛 ↦ ( 𝑥 ∈ ( 𝑎m 𝑛 ) ↦ ( 𝑥𝑖 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprj prj
1 va 𝑎
2 cvv V
3 vn 𝑛
4 com ω
5 c1o 1o
6 4 5 cdif ( ω ∖ 1o )
7 vi 𝑖
8 3 cv 𝑛
9 vx 𝑥
10 1 cv 𝑎
11 cmap m
12 10 8 11 co ( 𝑎m 𝑛 )
13 9 cv 𝑥
14 7 cv 𝑖
15 14 13 cfv ( 𝑥𝑖 )
16 9 12 15 cmpt ( 𝑥 ∈ ( 𝑎m 𝑛 ) ↦ ( 𝑥𝑖 ) )
17 3 7 6 8 16 cmpo ( 𝑛 ∈ ( ω ∖ 1o ) , 𝑖𝑛 ↦ ( 𝑥 ∈ ( 𝑎m 𝑛 ) ↦ ( 𝑥𝑖 ) ) )
18 1 2 17 cmpt ( 𝑎 ∈ V ↦ ( 𝑛 ∈ ( ω ∖ 1o ) , 𝑖𝑛 ↦ ( 𝑥 ∈ ( 𝑎m 𝑛 ) ↦ ( 𝑥𝑖 ) ) ) )
19 0 18 wceq prj = ( 𝑎 ∈ V ↦ ( 𝑛 ∈ ( ω ∖ 1o ) , 𝑖𝑛 ↦ ( 𝑥 ∈ ( 𝑎m 𝑛 ) ↦ ( 𝑥𝑖 ) ) ) )