Metamath Proof Explorer


Definition df-prpr

Description: Define the function which maps a set v to the set of proper unordered pairs consisting of exactly two (different) elements of the set v . (Contributed by AV, 29-Apr-2023)

Ref Expression
Assertion df-prpr
|- PrPairs = ( v e. _V |-> { p | E. a e. v E. b e. v ( a =/= b /\ p = { a , b } ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprpr
 |-  PrPairs
1 vv
 |-  v
2 cvv
 |-  _V
3 vp
 |-  p
4 va
 |-  a
5 1 cv
 |-  v
6 vb
 |-  b
7 4 cv
 |-  a
8 6 cv
 |-  b
9 7 8 wne
 |-  a =/= b
10 3 cv
 |-  p
11 7 8 cpr
 |-  { a , b }
12 10 11 wceq
 |-  p = { a , b }
13 9 12 wa
 |-  ( a =/= b /\ p = { a , b } )
14 13 6 5 wrex
 |-  E. b e. v ( a =/= b /\ p = { a , b } )
15 14 4 5 wrex
 |-  E. a e. v E. b e. v ( a =/= b /\ p = { a , b } )
16 15 3 cab
 |-  { p | E. a e. v E. b e. v ( a =/= b /\ p = { a , b } ) }
17 1 2 16 cmpt
 |-  ( v e. _V |-> { p | E. a e. v E. b e. v ( a =/= b /\ p = { a , b } ) } )
18 0 17 wceq
 |-  PrPairs = ( v e. _V |-> { p | E. a e. v E. b e. v ( a =/= b /\ p = { a , b } ) } )