| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cprpr | ⊢ Pairsproper | 
						
							| 1 |  | vv | ⊢ 𝑣 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vp | ⊢ 𝑝 | 
						
							| 4 |  | va | ⊢ 𝑎 | 
						
							| 5 | 1 | cv | ⊢ 𝑣 | 
						
							| 6 |  | vb | ⊢ 𝑏 | 
						
							| 7 | 4 | cv | ⊢ 𝑎 | 
						
							| 8 | 6 | cv | ⊢ 𝑏 | 
						
							| 9 | 7 8 | wne | ⊢ 𝑎  ≠  𝑏 | 
						
							| 10 | 3 | cv | ⊢ 𝑝 | 
						
							| 11 | 7 8 | cpr | ⊢ { 𝑎 ,  𝑏 } | 
						
							| 12 | 10 11 | wceq | ⊢ 𝑝  =  { 𝑎 ,  𝑏 } | 
						
							| 13 | 9 12 | wa | ⊢ ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) | 
						
							| 14 | 13 6 5 | wrex | ⊢ ∃ 𝑏  ∈  𝑣 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) | 
						
							| 15 | 14 4 5 | wrex | ⊢ ∃ 𝑎  ∈  𝑣 ∃ 𝑏  ∈  𝑣 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) | 
						
							| 16 | 15 3 | cab | ⊢ { 𝑝  ∣  ∃ 𝑎  ∈  𝑣 ∃ 𝑏  ∈  𝑣 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) } | 
						
							| 17 | 1 2 16 | cmpt | ⊢ ( 𝑣  ∈  V  ↦  { 𝑝  ∣  ∃ 𝑎  ∈  𝑣 ∃ 𝑏  ∈  𝑣 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) } ) | 
						
							| 18 | 0 17 | wceq | ⊢ Pairsproper  =  ( 𝑣  ∈  V  ↦  { 𝑝  ∣  ∃ 𝑎  ∈  𝑣 ∃ 𝑏  ∈  𝑣 ( 𝑎  ≠  𝑏  ∧  𝑝  =  { 𝑎 ,  𝑏 } ) } ) |