Step |
Hyp |
Ref |
Expression |
0 |
|
cpscN |
|- PSubCl |
1 |
|
vk |
|- k |
2 |
|
cvv |
|- _V |
3 |
|
vs |
|- s |
4 |
3
|
cv |
|- s |
5 |
|
catm |
|- Atoms |
6 |
1
|
cv |
|- k |
7 |
6 5
|
cfv |
|- ( Atoms ` k ) |
8 |
4 7
|
wss |
|- s C_ ( Atoms ` k ) |
9 |
|
cpolN |
|- _|_P |
10 |
6 9
|
cfv |
|- ( _|_P ` k ) |
11 |
4 10
|
cfv |
|- ( ( _|_P ` k ) ` s ) |
12 |
11 10
|
cfv |
|- ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) |
13 |
12 4
|
wceq |
|- ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s |
14 |
8 13
|
wa |
|- ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) |
15 |
14 3
|
cab |
|- { s | ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) } |
16 |
1 2 15
|
cmpt |
|- ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) } ) |
17 |
0 16
|
wceq |
|- PSubCl = ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) } ) |