| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpscN |
|- PSubCl |
| 1 |
|
vk |
|- k |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vs |
|- s |
| 4 |
3
|
cv |
|- s |
| 5 |
|
catm |
|- Atoms |
| 6 |
1
|
cv |
|- k |
| 7 |
6 5
|
cfv |
|- ( Atoms ` k ) |
| 8 |
4 7
|
wss |
|- s C_ ( Atoms ` k ) |
| 9 |
|
cpolN |
|- _|_P |
| 10 |
6 9
|
cfv |
|- ( _|_P ` k ) |
| 11 |
4 10
|
cfv |
|- ( ( _|_P ` k ) ` s ) |
| 12 |
11 10
|
cfv |
|- ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) |
| 13 |
12 4
|
wceq |
|- ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s |
| 14 |
8 13
|
wa |
|- ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) |
| 15 |
14 3
|
cab |
|- { s | ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) } |
| 16 |
1 2 15
|
cmpt |
|- ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) } ) |
| 17 |
0 16
|
wceq |
|- PSubCl = ( k e. _V |-> { s | ( s C_ ( Atoms ` k ) /\ ( ( _|_P ` k ) ` ( ( _|_P ` k ) ` s ) ) = s ) } ) |