| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpscN | ⊢ PSubCl | 
						
							| 1 |  | vk | ⊢ 𝑘 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vs | ⊢ 𝑠 | 
						
							| 4 | 3 | cv | ⊢ 𝑠 | 
						
							| 5 |  | catm | ⊢ Atoms | 
						
							| 6 | 1 | cv | ⊢ 𝑘 | 
						
							| 7 | 6 5 | cfv | ⊢ ( Atoms ‘ 𝑘 ) | 
						
							| 8 | 4 7 | wss | ⊢ 𝑠  ⊆  ( Atoms ‘ 𝑘 ) | 
						
							| 9 |  | cpolN | ⊢ ⊥𝑃 | 
						
							| 10 | 6 9 | cfv | ⊢ ( ⊥𝑃 ‘ 𝑘 ) | 
						
							| 11 | 4 10 | cfv | ⊢ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) | 
						
							| 12 | 11 10 | cfv | ⊢ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) ) | 
						
							| 13 | 12 4 | wceq | ⊢ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) )  =  𝑠 | 
						
							| 14 | 8 13 | wa | ⊢ ( 𝑠  ⊆  ( Atoms ‘ 𝑘 )  ∧  ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) )  =  𝑠 ) | 
						
							| 15 | 14 3 | cab | ⊢ { 𝑠  ∣  ( 𝑠  ⊆  ( Atoms ‘ 𝑘 )  ∧  ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) )  =  𝑠 ) } | 
						
							| 16 | 1 2 15 | cmpt | ⊢ ( 𝑘  ∈  V  ↦  { 𝑠  ∣  ( 𝑠  ⊆  ( Atoms ‘ 𝑘 )  ∧  ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) )  =  𝑠 ) } ) | 
						
							| 17 | 0 16 | wceq | ⊢ PSubCl  =  ( 𝑘  ∈  V  ↦  { 𝑠  ∣  ( 𝑠  ⊆  ( Atoms ‘ 𝑘 )  ∧  ( ( ⊥𝑃 ‘ 𝑘 ) ‘ ( ( ⊥𝑃 ‘ 𝑘 ) ‘ 𝑠 ) )  =  𝑠 ) } ) |