Metamath Proof Explorer


Definition df-rediv

Description: Define division between real numbers. This operator saves ax-mulcom over df-div in certain situations. (Contributed by SN, 25-Nov-2025)

Ref Expression
Assertion df-rediv
|- /R = ( x e. RR , y e. ( RR \ { 0 } ) |-> ( iota_ z e. RR ( y x. z ) = x ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crediv
 |-  /R
1 vx
 |-  x
2 cr
 |-  RR
3 vy
 |-  y
4 cc0
 |-  0
5 4 csn
 |-  { 0 }
6 2 5 cdif
 |-  ( RR \ { 0 } )
7 vz
 |-  z
8 3 cv
 |-  y
9 cmul
 |-  x.
10 7 cv
 |-  z
11 8 10 9 co
 |-  ( y x. z )
12 1 cv
 |-  x
13 11 12 wceq
 |-  ( y x. z ) = x
14 13 7 2 crio
 |-  ( iota_ z e. RR ( y x. z ) = x )
15 1 3 2 6 14 cmpo
 |-  ( x e. RR , y e. ( RR \ { 0 } ) |-> ( iota_ z e. RR ( y x. z ) = x ) )
16 0 15 wceq
 |-  /R = ( x e. RR , y e. ( RR \ { 0 } ) |-> ( iota_ z e. RR ( y x. z ) = x ) )