| Step |
Hyp |
Ref |
Expression |
| 1 |
|
redivvald.a |
|- ( ph -> A e. RR ) |
| 2 |
|
redivvald.b |
|- ( ph -> B e. RR ) |
| 3 |
|
redivvald.z |
|- ( ph -> B =/= 0 ) |
| 4 |
2 3
|
eldifsnd |
|- ( ph -> B e. ( RR \ { 0 } ) ) |
| 5 |
|
eqeq2 |
|- ( z = A -> ( ( y x. x ) = z <-> ( y x. x ) = A ) ) |
| 6 |
5
|
riotabidv |
|- ( z = A -> ( iota_ x e. RR ( y x. x ) = z ) = ( iota_ x e. RR ( y x. x ) = A ) ) |
| 7 |
|
oveq1 |
|- ( y = B -> ( y x. x ) = ( B x. x ) ) |
| 8 |
7
|
eqeq1d |
|- ( y = B -> ( ( y x. x ) = A <-> ( B x. x ) = A ) ) |
| 9 |
8
|
riotabidv |
|- ( y = B -> ( iota_ x e. RR ( y x. x ) = A ) = ( iota_ x e. RR ( B x. x ) = A ) ) |
| 10 |
|
df-rediv |
|- /R = ( z e. RR , y e. ( RR \ { 0 } ) |-> ( iota_ x e. RR ( y x. x ) = z ) ) |
| 11 |
|
riotaex |
|- ( iota_ x e. RR ( B x. x ) = A ) e. _V |
| 12 |
6 9 10 11
|
ovmpo |
|- ( ( A e. RR /\ B e. ( RR \ { 0 } ) ) -> ( A /R B ) = ( iota_ x e. RR ( B x. x ) = A ) ) |
| 13 |
1 4 12
|
syl2anc |
|- ( ph -> ( A /R B ) = ( iota_ x e. RR ( B x. x ) = A ) ) |