| Step |
Hyp |
Ref |
Expression |
| 1 |
|
redivvald.a |
|- ( ph -> A e. RR ) |
| 2 |
|
redivvald.b |
|- ( ph -> B e. RR ) |
| 3 |
|
redivvald.z |
|- ( ph -> B =/= 0 ) |
| 4 |
|
ax-rrecex |
|- ( ( B e. RR /\ B =/= 0 ) -> E. y e. RR ( B x. y ) = 1 ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ph -> E. y e. RR ( B x. y ) = 1 ) |
| 6 |
|
oveq2 |
|- ( x = ( y x. A ) -> ( B x. x ) = ( B x. ( y x. A ) ) ) |
| 7 |
6
|
eqeq1d |
|- ( x = ( y x. A ) -> ( ( B x. x ) = A <-> ( B x. ( y x. A ) ) = A ) ) |
| 8 |
|
simprl |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> y e. RR ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> A e. RR ) |
| 10 |
8 9
|
remulcld |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> ( y x. A ) e. RR ) |
| 11 |
|
simprr |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> ( B x. y ) = 1 ) |
| 12 |
11
|
oveq1d |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> ( ( B x. y ) x. A ) = ( 1 x. A ) ) |
| 13 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> B e. CC ) |
| 15 |
8
|
recnd |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> y e. CC ) |
| 16 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> A e. CC ) |
| 18 |
14 15 17
|
mulassd |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> ( ( B x. y ) x. A ) = ( B x. ( y x. A ) ) ) |
| 19 |
|
remullid |
|- ( A e. RR -> ( 1 x. A ) = A ) |
| 20 |
1 19
|
syl |
|- ( ph -> ( 1 x. A ) = A ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> ( 1 x. A ) = A ) |
| 22 |
12 18 21
|
3eqtr3d |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> ( B x. ( y x. A ) ) = A ) |
| 23 |
7 10 22
|
rspcedvdw |
|- ( ( ph /\ ( y e. RR /\ ( B x. y ) = 1 ) ) -> E. x e. RR ( B x. x ) = A ) |
| 24 |
5 23
|
rexlimddv |
|- ( ph -> E. x e. RR ( B x. x ) = A ) |
| 25 |
|
eqtr3 |
|- ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> ( B x. x ) = ( B x. y ) ) |
| 26 |
|
simprl |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> x e. RR ) |
| 27 |
|
simprr |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> y e. RR ) |
| 28 |
2
|
adantr |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> B e. RR ) |
| 29 |
3
|
adantr |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> B =/= 0 ) |
| 30 |
26 27 28 29
|
remulcand |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( ( B x. x ) = ( B x. y ) <-> x = y ) ) |
| 31 |
25 30
|
imbitrid |
|- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) |
| 32 |
31
|
ralrimivva |
|- ( ph -> A. x e. RR A. y e. RR ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) |
| 33 |
|
oveq2 |
|- ( x = y -> ( B x. x ) = ( B x. y ) ) |
| 34 |
33
|
eqeq1d |
|- ( x = y -> ( ( B x. x ) = A <-> ( B x. y ) = A ) ) |
| 35 |
34
|
reu4 |
|- ( E! x e. RR ( B x. x ) = A <-> ( E. x e. RR ( B x. x ) = A /\ A. x e. RR A. y e. RR ( ( ( B x. x ) = A /\ ( B x. y ) = A ) -> x = y ) ) ) |
| 36 |
24 32 35
|
sylanbrc |
|- ( ph -> E! x e. RR ( B x. x ) = A ) |