| Step |
Hyp |
Ref |
Expression |
| 1 |
|
redivvald.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
redivvald.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
redivvald.z |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 4 |
|
ax-rrecex |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ∃ 𝑦 ∈ ℝ ( 𝐵 · 𝑦 ) = 1 ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ( 𝐵 · 𝑦 ) = 1 ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 · 𝐴 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · ( 𝑦 · 𝐴 ) ) ) |
| 7 |
6
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑦 · 𝐴 ) → ( ( 𝐵 · 𝑥 ) = 𝐴 ↔ ( 𝐵 · ( 𝑦 · 𝐴 ) ) = 𝐴 ) ) |
| 8 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → 𝑦 ∈ ℝ ) |
| 9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → 𝐴 ∈ ℝ ) |
| 10 |
8 9
|
remulcld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( 𝑦 · 𝐴 ) ∈ ℝ ) |
| 11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( 𝐵 · 𝑦 ) = 1 ) |
| 12 |
11
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( ( 𝐵 · 𝑦 ) · 𝐴 ) = ( 1 · 𝐴 ) ) |
| 13 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → 𝐵 ∈ ℂ ) |
| 15 |
8
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → 𝑦 ∈ ℂ ) |
| 16 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → 𝐴 ∈ ℂ ) |
| 18 |
14 15 17
|
mulassd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( ( 𝐵 · 𝑦 ) · 𝐴 ) = ( 𝐵 · ( 𝑦 · 𝐴 ) ) ) |
| 19 |
|
remullid |
⊢ ( 𝐴 ∈ ℝ → ( 1 · 𝐴 ) = 𝐴 ) |
| 20 |
1 19
|
syl |
⊢ ( 𝜑 → ( 1 · 𝐴 ) = 𝐴 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 22 |
12 18 21
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ( 𝐵 · ( 𝑦 · 𝐴 ) ) = 𝐴 ) |
| 23 |
7 10 22
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ ( 𝐵 · 𝑦 ) = 1 ) ) → ∃ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) |
| 24 |
5 23
|
rexlimddv |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) |
| 25 |
|
eqtr3 |
⊢ ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑦 ) ) |
| 26 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → 𝑥 ∈ ℝ ) |
| 27 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → 𝑦 ∈ ℝ ) |
| 28 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) |
| 29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → 𝐵 ≠ 0 ) |
| 30 |
26 27 28 29
|
remulcand |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 31 |
25 30
|
imbitrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 32 |
31
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 · 𝑥 ) = ( 𝐵 · 𝑦 ) ) |
| 34 |
33
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 · 𝑥 ) = 𝐴 ↔ ( 𝐵 · 𝑦 ) = 𝐴 ) ) |
| 35 |
34
|
reu4 |
⊢ ( ∃! 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ↔ ( ∃ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ∧ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ ( ( ( 𝐵 · 𝑥 ) = 𝐴 ∧ ( 𝐵 · 𝑦 ) = 𝐴 ) → 𝑥 = 𝑦 ) ) ) |
| 36 |
24 32 35
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) |