Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Real and complex number postulates restated as axioms
ax-rrecex
Metamath Proof Explorer
Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real
and complex numbers, justified by Theorem axrrecex . (Contributed by Eric Schmidt , 11-Apr-2007)
Ref
Expression
Assertion
ax-rrecex
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1 )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cA
⊢ 𝐴
1
cr
⊢ ℝ
2
0 1
wcel
⊢ 𝐴 ∈ ℝ
3
cc0
⊢ 0
4
0 3
wne
⊢ 𝐴 ≠ 0
5
2 4
wa
⊢ ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 )
6
vx
⊢ 𝑥
7
cmul
⊢ ·
8
6
cv
⊢ 𝑥
9
0 8 7
co
⊢ ( 𝐴 · 𝑥 )
10
c1
⊢ 1
11
9 10
wceq
⊢ ( 𝐴 · 𝑥 ) = 1
12
11 6 1
wrex
⊢ ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1
13
5 12
wi
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 · 𝑥 ) = 1 )