| Step |
Hyp |
Ref |
Expression |
| 1 |
|
redivvald.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
redivvald.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
redivvald.z |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 4 |
2 3
|
eldifsnd |
⊢ ( 𝜑 → 𝐵 ∈ ( ℝ ∖ { 0 } ) ) |
| 5 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑦 · 𝑥 ) = 𝑧 ↔ ( 𝑦 · 𝑥 ) = 𝐴 ) ) |
| 6 |
5
|
riotabidv |
⊢ ( 𝑧 = 𝐴 → ( ℩ 𝑥 ∈ ℝ ( 𝑦 · 𝑥 ) = 𝑧 ) = ( ℩ 𝑥 ∈ ℝ ( 𝑦 · 𝑥 ) = 𝐴 ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 · 𝑥 ) = ( 𝐵 · 𝑥 ) ) |
| 8 |
7
|
eqeq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 · 𝑥 ) = 𝐴 ↔ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 9 |
8
|
riotabidv |
⊢ ( 𝑦 = 𝐵 → ( ℩ 𝑥 ∈ ℝ ( 𝑦 · 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 10 |
|
df-rediv |
⊢ /ℝ = ( 𝑧 ∈ ℝ , 𝑦 ∈ ( ℝ ∖ { 0 } ) ↦ ( ℩ 𝑥 ∈ ℝ ( 𝑦 · 𝑥 ) = 𝑧 ) ) |
| 11 |
|
riotaex |
⊢ ( ℩ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) ∈ V |
| 12 |
6 9 10 11
|
ovmpo |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ( ℝ ∖ { 0 } ) ) → ( 𝐴 /ℝ 𝐵 ) = ( ℩ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
| 13 |
1 4 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 /ℝ 𝐵 ) = ( ℩ 𝑥 ∈ ℝ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |