Metamath Proof Explorer


Definition df-reflexive

Description: Define reflexive relation; relation R is reflexive over the set A iff A. x e. A x R x . (Contributed by David A. Wheeler, 1-Dec-2019)

Ref Expression
Assertion df-reflexive
|- ( R Reflexive A <-> ( R C_ ( A X. A ) /\ A. x e. A x R x ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 cA
 |-  A
2 1 0 wreflexive
 |-  R Reflexive A
3 1 1 cxp
 |-  ( A X. A )
4 0 3 wss
 |-  R C_ ( A X. A )
5 vx
 |-  x
6 5 cv
 |-  x
7 6 6 0 wbr
 |-  x R x
8 7 5 1 wral
 |-  A. x e. A x R x
9 4 8 wa
 |-  ( R C_ ( A X. A ) /\ A. x e. A x R x )
10 2 9 wb
 |-  ( R Reflexive A <-> ( R C_ ( A X. A ) /\ A. x e. A x R x ) )