Metamath Proof Explorer


Definition df-reflexive

Description: Define reflexive relation; relation R is reflexive over the set A iff A. x e. A x R x . (Contributed by David A. Wheeler, 1-Dec-2019)

Ref Expression
Assertion df-reflexive R Reflexive A R A × A x A x R x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 cA class A
2 1 0 wreflexive wff R Reflexive A
3 1 1 cxp class A × A
4 0 3 wss wff R A × A
5 vx setvar x
6 5 cv setvar x
7 6 6 0 wbr wff x R x
8 7 5 1 wral wff x A x R x
9 4 8 wa wff R A × A x A x R x
10 2 9 wb wff R Reflexive A R A × A x A x R x