Metamath Proof Explorer


Definition df-reflexive

Description: Define reflexive relation; relation R is reflexive over the set A iff A. x e. A x R x . (Contributed by David A. Wheeler, 1-Dec-2019)

Ref Expression
Assertion df-reflexive RReflexiveARA×AxAxRx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR classR
1 cA classA
2 1 0 wreflexive wffRReflexiveA
3 1 1 cxp classA×A
4 0 3 wss wffRA×A
5 vx setvarx
6 5 cv setvarx
7 6 6 0 wbr wffxRx
8 7 5 1 wral wffxAxRx
9 4 8 wa wffRA×AxAxRx
10 2 9 wb wffRReflexiveARA×AxAxRx