Metamath Proof Explorer
		
		
		
		Description:  Define reflexive relation; relation R is reflexive over the set
       A iff A. x e. A x R x .  (Contributed by David A. Wheeler, 1-Dec-2019)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | df-reflexive |  | 
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cR |  | 
						
							| 1 |  | cA |  | 
						
							| 2 | 1 0 | wreflexive |  | 
						
							| 3 | 1 1 | cxp |  | 
						
							| 4 | 0 3 | wss |  | 
						
							| 5 |  | vx |  | 
						
							| 6 | 5 | cv |  | 
						
							| 7 | 6 6 0 | wbr |  | 
						
							| 8 | 7 5 1 | wral |  | 
						
							| 9 | 4 8 | wa |  | 
						
							| 10 | 2 9 | wb |  |