Step |
Hyp |
Ref |
Expression |
0 |
|
crgr |
|- RegGraph |
1 |
|
vg |
|- g |
2 |
|
vk |
|- k |
3 |
2
|
cv |
|- k |
4 |
|
cxnn0 |
|- NN0* |
5 |
3 4
|
wcel |
|- k e. NN0* |
6 |
|
vv |
|- v |
7 |
|
cvtx |
|- Vtx |
8 |
1
|
cv |
|- g |
9 |
8 7
|
cfv |
|- ( Vtx ` g ) |
10 |
|
cvtxdg |
|- VtxDeg |
11 |
8 10
|
cfv |
|- ( VtxDeg ` g ) |
12 |
6
|
cv |
|- v |
13 |
12 11
|
cfv |
|- ( ( VtxDeg ` g ) ` v ) |
14 |
13 3
|
wceq |
|- ( ( VtxDeg ` g ) ` v ) = k |
15 |
14 6 9
|
wral |
|- A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k |
16 |
5 15
|
wa |
|- ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k ) |
17 |
16 1 2
|
copab |
|- { <. g , k >. | ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k ) } |
18 |
0 17
|
wceq |
|- RegGraph = { <. g , k >. | ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k ) } |