Metamath Proof Explorer


Definition df-rgr

Description: Define the "k-regular" predicate, which is true for a "graph" being k-regular: read G RegGraph K as " G is K-regular" or " G is a K-regular graph". Note that K is allowed to be positive infinity ( K e. NN0* ), as proposed by GL. (Contributed by Alexander van der Vekens, 6-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Assertion df-rgr
|- RegGraph = { <. g , k >. | ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 crgr
 |-  RegGraph
1 vg
 |-  g
2 vk
 |-  k
3 2 cv
 |-  k
4 cxnn0
 |-  NN0*
5 3 4 wcel
 |-  k e. NN0*
6 vv
 |-  v
7 cvtx
 |-  Vtx
8 1 cv
 |-  g
9 8 7 cfv
 |-  ( Vtx ` g )
10 cvtxdg
 |-  VtxDeg
11 8 10 cfv
 |-  ( VtxDeg ` g )
12 6 cv
 |-  v
13 12 11 cfv
 |-  ( ( VtxDeg ` g ) ` v )
14 13 3 wceq
 |-  ( ( VtxDeg ` g ) ` v ) = k
15 14 6 9 wral
 |-  A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k
16 5 15 wa
 |-  ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k )
17 16 1 2 copab
 |-  { <. g , k >. | ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k ) }
18 0 17 wceq
 |-  RegGraph = { <. g , k >. | ( k e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k ) }