Description: Define the canonical homomorphism from the real numbers to any complete field, as the extension by continuity of the canonical homomorphism from the rational numbers. (Contributed by Mario Carneiro, 22-Oct-2017) (Revised by Thierry Arnoux, 23-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-rrh | |- RRHom = ( r e. _V |-> ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` r ) ) ` ( QQHom ` r ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | crrh | |- RRHom |
|
1 | vr | |- r |
|
2 | cvv | |- _V |
|
3 | ctg | |- topGen |
|
4 | cioo | |- (,) |
|
5 | 4 | crn | |- ran (,) |
6 | 5 3 | cfv | |- ( topGen ` ran (,) ) |
7 | ccnext | |- CnExt |
|
8 | ctopn | |- TopOpen |
|
9 | 1 | cv | |- r |
10 | 9 8 | cfv | |- ( TopOpen ` r ) |
11 | 6 10 7 | co | |- ( ( topGen ` ran (,) ) CnExt ( TopOpen ` r ) ) |
12 | cqqh | |- QQHom |
|
13 | 9 12 | cfv | |- ( QQHom ` r ) |
14 | 13 11 | cfv | |- ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` r ) ) ` ( QQHom ` r ) ) |
15 | 1 2 14 | cmpt | |- ( r e. _V |-> ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` r ) ) ` ( QQHom ` r ) ) ) |
16 | 0 15 | wceq | |- RRHom = ( r e. _V |-> ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` r ) ) ` ( QQHom ` r ) ) ) |