Step |
Hyp |
Ref |
Expression |
1 |
|
rrhval.1 |
|- J = ( topGen ` ran (,) ) |
2 |
|
rrhval.2 |
|- K = ( TopOpen ` R ) |
3 |
|
elex |
|- ( R e. V -> R e. _V ) |
4 |
1
|
eqcomi |
|- ( topGen ` ran (,) ) = J |
5 |
4
|
a1i |
|- ( r = R -> ( topGen ` ran (,) ) = J ) |
6 |
|
fveq2 |
|- ( r = R -> ( TopOpen ` r ) = ( TopOpen ` R ) ) |
7 |
6 2
|
eqtr4di |
|- ( r = R -> ( TopOpen ` r ) = K ) |
8 |
5 7
|
oveq12d |
|- ( r = R -> ( ( topGen ` ran (,) ) CnExt ( TopOpen ` r ) ) = ( J CnExt K ) ) |
9 |
|
fveq2 |
|- ( r = R -> ( QQHom ` r ) = ( QQHom ` R ) ) |
10 |
8 9
|
fveq12d |
|- ( r = R -> ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` r ) ) ` ( QQHom ` r ) ) = ( ( J CnExt K ) ` ( QQHom ` R ) ) ) |
11 |
|
df-rrh |
|- RRHom = ( r e. _V |-> ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` r ) ) ` ( QQHom ` r ) ) ) |
12 |
|
fvex |
|- ( ( J CnExt K ) ` ( QQHom ` R ) ) e. _V |
13 |
10 11 12
|
fvmpt |
|- ( R e. _V -> ( RRHom ` R ) = ( ( J CnExt K ) ` ( QQHom ` R ) ) ) |
14 |
3 13
|
syl |
|- ( R e. V -> ( RRHom ` R ) = ( ( J CnExt K ) ` ( QQHom ` R ) ) ) |