Metamath Proof Explorer


Theorem rrhcn

Description: If the topology of R is Hausdorff, and R is a complete uniform space, then the canonical homomorphism from the real numbers to R is continuous. (Contributed by Thierry Arnoux, 17-Jan-2018)

Ref Expression
Hypotheses rrhf.d
|- D = ( ( dist ` R ) |` ( B X. B ) )
rrhf.j
|- J = ( topGen ` ran (,) )
rrhf.b
|- B = ( Base ` R )
rrhf.k
|- K = ( TopOpen ` R )
rrhf.z
|- Z = ( ZMod ` R )
rrhf.1
|- ( ph -> R e. DivRing )
rrhf.2
|- ( ph -> R e. NrmRing )
rrhf.3
|- ( ph -> Z e. NrmMod )
rrhf.4
|- ( ph -> ( chr ` R ) = 0 )
rrhf.5
|- ( ph -> R e. CUnifSp )
rrhf.6
|- ( ph -> ( UnifSt ` R ) = ( metUnif ` D ) )
Assertion rrhcn
|- ( ph -> ( RRHom ` R ) e. ( J Cn K ) )

Proof

Step Hyp Ref Expression
1 rrhf.d
 |-  D = ( ( dist ` R ) |` ( B X. B ) )
2 rrhf.j
 |-  J = ( topGen ` ran (,) )
3 rrhf.b
 |-  B = ( Base ` R )
4 rrhf.k
 |-  K = ( TopOpen ` R )
5 rrhf.z
 |-  Z = ( ZMod ` R )
6 rrhf.1
 |-  ( ph -> R e. DivRing )
7 rrhf.2
 |-  ( ph -> R e. NrmRing )
8 rrhf.3
 |-  ( ph -> Z e. NrmMod )
9 rrhf.4
 |-  ( ph -> ( chr ` R ) = 0 )
10 rrhf.5
 |-  ( ph -> R e. CUnifSp )
11 rrhf.6
 |-  ( ph -> ( UnifSt ` R ) = ( metUnif ` D ) )
12 nrgngp
 |-  ( R e. NrmRing -> R e. NrmGrp )
13 ngpxms
 |-  ( R e. NrmGrp -> R e. *MetSp )
14 7 12 13 3syl
 |-  ( ph -> R e. *MetSp )
15 xmstps
 |-  ( R e. *MetSp -> R e. TopSp )
16 14 15 syl
 |-  ( ph -> R e. TopSp )
17 2 4 rrhval
 |-  ( R e. TopSp -> ( RRHom ` R ) = ( ( J CnExt K ) ` ( QQHom ` R ) ) )
18 16 17 syl
 |-  ( ph -> ( RRHom ` R ) = ( ( J CnExt K ) ` ( QQHom ` R ) ) )
19 rebase
 |-  RR = ( Base ` RRfld )
20 retopn
 |-  ( topGen ` ran (,) ) = ( TopOpen ` RRfld )
21 2 20 eqtri
 |-  J = ( TopOpen ` RRfld )
22 eqid
 |-  ( UnifSt ` RRfld ) = ( UnifSt ` RRfld )
23 df-refld
 |-  RRfld = ( CCfld |`s RR )
24 23 oveq1i
 |-  ( RRfld |`s QQ ) = ( ( CCfld |`s RR ) |`s QQ )
25 reex
 |-  RR e. _V
26 qssre
 |-  QQ C_ RR
27 ressabs
 |-  ( ( RR e. _V /\ QQ C_ RR ) -> ( ( CCfld |`s RR ) |`s QQ ) = ( CCfld |`s QQ ) )
28 25 26 27 mp2an
 |-  ( ( CCfld |`s RR ) |`s QQ ) = ( CCfld |`s QQ )
29 24 28 eqtr2i
 |-  ( CCfld |`s QQ ) = ( RRfld |`s QQ )
30 29 fveq2i
 |-  ( UnifSt ` ( CCfld |`s QQ ) ) = ( UnifSt ` ( RRfld |`s QQ ) )
31 eqid
 |-  ( UnifSt ` R ) = ( UnifSt ` R )
32 recms
 |-  RRfld e. CMetSp
33 cmsms
 |-  ( RRfld e. CMetSp -> RRfld e. MetSp )
34 mstps
 |-  ( RRfld e. MetSp -> RRfld e. TopSp )
35 32 33 34 mp2b
 |-  RRfld e. TopSp
36 35 a1i
 |-  ( ph -> RRfld e. TopSp )
37 recusp
 |-  RRfld e. CUnifSp
38 cuspusp
 |-  ( RRfld e. CUnifSp -> RRfld e. UnifSp )
39 37 38 mp1i
 |-  ( ph -> RRfld e. UnifSp )
40 4 3 1 xmstopn
 |-  ( R e. *MetSp -> K = ( MetOpen ` D ) )
41 14 40 syl
 |-  ( ph -> K = ( MetOpen ` D ) )
42 3 1 xmsxmet
 |-  ( R e. *MetSp -> D e. ( *Met ` B ) )
43 eqid
 |-  ( MetOpen ` D ) = ( MetOpen ` D )
44 43 methaus
 |-  ( D e. ( *Met ` B ) -> ( MetOpen ` D ) e. Haus )
45 14 42 44 3syl
 |-  ( ph -> ( MetOpen ` D ) e. Haus )
46 41 45 eqeltrd
 |-  ( ph -> K e. Haus )
47 26 a1i
 |-  ( ph -> QQ C_ RR )
48 eqid
 |-  ( CCfld |`s QQ ) = ( CCfld |`s QQ )
49 eqid
 |-  ( UnifSt ` ( CCfld |`s QQ ) ) = ( UnifSt ` ( CCfld |`s QQ ) )
50 1 fveq2i
 |-  ( metUnif ` D ) = ( metUnif ` ( ( dist ` R ) |` ( B X. B ) ) )
51 3 48 49 50 5 7 6 8 9 qqhucn
 |-  ( ph -> ( QQHom ` R ) e. ( ( UnifSt ` ( CCfld |`s QQ ) ) uCn ( metUnif ` D ) ) )
52 11 eqcomd
 |-  ( ph -> ( metUnif ` D ) = ( UnifSt ` R ) )
53 52 oveq2d
 |-  ( ph -> ( ( UnifSt ` ( CCfld |`s QQ ) ) uCn ( metUnif ` D ) ) = ( ( UnifSt ` ( CCfld |`s QQ ) ) uCn ( UnifSt ` R ) ) )
54 51 53 eleqtrd
 |-  ( ph -> ( QQHom ` R ) e. ( ( UnifSt ` ( CCfld |`s QQ ) ) uCn ( UnifSt ` R ) ) )
55 2 fveq2i
 |-  ( cls ` J ) = ( cls ` ( topGen ` ran (,) ) )
56 55 fveq1i
 |-  ( ( cls ` J ) ` QQ ) = ( ( cls ` ( topGen ` ran (,) ) ) ` QQ )
57 qdensere
 |-  ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR
58 56 57 eqtri
 |-  ( ( cls ` J ) ` QQ ) = RR
59 58 a1i
 |-  ( ph -> ( ( cls ` J ) ` QQ ) = RR )
60 19 3 21 4 22 30 31 36 39 16 10 46 47 54 59 ucnextcn
 |-  ( ph -> ( ( J CnExt K ) ` ( QQHom ` R ) ) e. ( J Cn K ) )
61 18 60 eqeltrd
 |-  ( ph -> ( RRHom ` R ) e. ( J Cn K ) )