Step |
Hyp |
Ref |
Expression |
1 |
|
rrhf.d |
|- D = ( ( dist ` R ) |` ( B X. B ) ) |
2 |
|
rrhf.j |
|- J = ( topGen ` ran (,) ) |
3 |
|
rrhf.b |
|- B = ( Base ` R ) |
4 |
|
rrhf.k |
|- K = ( TopOpen ` R ) |
5 |
|
rrhf.z |
|- Z = ( ZMod ` R ) |
6 |
|
rrhf.1 |
|- ( ph -> R e. DivRing ) |
7 |
|
rrhf.2 |
|- ( ph -> R e. NrmRing ) |
8 |
|
rrhf.3 |
|- ( ph -> Z e. NrmMod ) |
9 |
|
rrhf.4 |
|- ( ph -> ( chr ` R ) = 0 ) |
10 |
|
rrhf.5 |
|- ( ph -> R e. CUnifSp ) |
11 |
|
rrhf.6 |
|- ( ph -> ( UnifSt ` R ) = ( metUnif ` D ) ) |
12 |
|
nrgngp |
|- ( R e. NrmRing -> R e. NrmGrp ) |
13 |
|
ngpxms |
|- ( R e. NrmGrp -> R e. *MetSp ) |
14 |
7 12 13
|
3syl |
|- ( ph -> R e. *MetSp ) |
15 |
|
xmstps |
|- ( R e. *MetSp -> R e. TopSp ) |
16 |
14 15
|
syl |
|- ( ph -> R e. TopSp ) |
17 |
2 4
|
rrhval |
|- ( R e. TopSp -> ( RRHom ` R ) = ( ( J CnExt K ) ` ( QQHom ` R ) ) ) |
18 |
16 17
|
syl |
|- ( ph -> ( RRHom ` R ) = ( ( J CnExt K ) ` ( QQHom ` R ) ) ) |
19 |
|
rebase |
|- RR = ( Base ` RRfld ) |
20 |
|
retopn |
|- ( topGen ` ran (,) ) = ( TopOpen ` RRfld ) |
21 |
2 20
|
eqtri |
|- J = ( TopOpen ` RRfld ) |
22 |
|
eqid |
|- ( UnifSt ` RRfld ) = ( UnifSt ` RRfld ) |
23 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
24 |
23
|
oveq1i |
|- ( RRfld |`s QQ ) = ( ( CCfld |`s RR ) |`s QQ ) |
25 |
|
reex |
|- RR e. _V |
26 |
|
qssre |
|- QQ C_ RR |
27 |
|
ressabs |
|- ( ( RR e. _V /\ QQ C_ RR ) -> ( ( CCfld |`s RR ) |`s QQ ) = ( CCfld |`s QQ ) ) |
28 |
25 26 27
|
mp2an |
|- ( ( CCfld |`s RR ) |`s QQ ) = ( CCfld |`s QQ ) |
29 |
24 28
|
eqtr2i |
|- ( CCfld |`s QQ ) = ( RRfld |`s QQ ) |
30 |
29
|
fveq2i |
|- ( UnifSt ` ( CCfld |`s QQ ) ) = ( UnifSt ` ( RRfld |`s QQ ) ) |
31 |
|
eqid |
|- ( UnifSt ` R ) = ( UnifSt ` R ) |
32 |
|
recms |
|- RRfld e. CMetSp |
33 |
|
cmsms |
|- ( RRfld e. CMetSp -> RRfld e. MetSp ) |
34 |
|
mstps |
|- ( RRfld e. MetSp -> RRfld e. TopSp ) |
35 |
32 33 34
|
mp2b |
|- RRfld e. TopSp |
36 |
35
|
a1i |
|- ( ph -> RRfld e. TopSp ) |
37 |
|
recusp |
|- RRfld e. CUnifSp |
38 |
|
cuspusp |
|- ( RRfld e. CUnifSp -> RRfld e. UnifSp ) |
39 |
37 38
|
mp1i |
|- ( ph -> RRfld e. UnifSp ) |
40 |
4 3 1
|
xmstopn |
|- ( R e. *MetSp -> K = ( MetOpen ` D ) ) |
41 |
14 40
|
syl |
|- ( ph -> K = ( MetOpen ` D ) ) |
42 |
3 1
|
xmsxmet |
|- ( R e. *MetSp -> D e. ( *Met ` B ) ) |
43 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
44 |
43
|
methaus |
|- ( D e. ( *Met ` B ) -> ( MetOpen ` D ) e. Haus ) |
45 |
14 42 44
|
3syl |
|- ( ph -> ( MetOpen ` D ) e. Haus ) |
46 |
41 45
|
eqeltrd |
|- ( ph -> K e. Haus ) |
47 |
26
|
a1i |
|- ( ph -> QQ C_ RR ) |
48 |
|
eqid |
|- ( CCfld |`s QQ ) = ( CCfld |`s QQ ) |
49 |
|
eqid |
|- ( UnifSt ` ( CCfld |`s QQ ) ) = ( UnifSt ` ( CCfld |`s QQ ) ) |
50 |
1
|
fveq2i |
|- ( metUnif ` D ) = ( metUnif ` ( ( dist ` R ) |` ( B X. B ) ) ) |
51 |
3 48 49 50 5 7 6 8 9
|
qqhucn |
|- ( ph -> ( QQHom ` R ) e. ( ( UnifSt ` ( CCfld |`s QQ ) ) uCn ( metUnif ` D ) ) ) |
52 |
11
|
eqcomd |
|- ( ph -> ( metUnif ` D ) = ( UnifSt ` R ) ) |
53 |
52
|
oveq2d |
|- ( ph -> ( ( UnifSt ` ( CCfld |`s QQ ) ) uCn ( metUnif ` D ) ) = ( ( UnifSt ` ( CCfld |`s QQ ) ) uCn ( UnifSt ` R ) ) ) |
54 |
51 53
|
eleqtrd |
|- ( ph -> ( QQHom ` R ) e. ( ( UnifSt ` ( CCfld |`s QQ ) ) uCn ( UnifSt ` R ) ) ) |
55 |
2
|
fveq2i |
|- ( cls ` J ) = ( cls ` ( topGen ` ran (,) ) ) |
56 |
55
|
fveq1i |
|- ( ( cls ` J ) ` QQ ) = ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) |
57 |
|
qdensere |
|- ( ( cls ` ( topGen ` ran (,) ) ) ` QQ ) = RR |
58 |
56 57
|
eqtri |
|- ( ( cls ` J ) ` QQ ) = RR |
59 |
58
|
a1i |
|- ( ph -> ( ( cls ` J ) ` QQ ) = RR ) |
60 |
19 3 21 4 22 30 31 36 39 16 10 46 47 54 59
|
ucnextcn |
|- ( ph -> ( ( J CnExt K ) ` ( QQHom ` R ) ) e. ( J Cn K ) ) |
61 |
18 60
|
eqeltrd |
|- ( ph -> ( RRHom ` R ) e. ( J Cn K ) ) |