| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ucnextcn.x |
|- X = ( Base ` V ) |
| 2 |
|
ucnextcn.y |
|- Y = ( Base ` W ) |
| 3 |
|
ucnextcn.j |
|- J = ( TopOpen ` V ) |
| 4 |
|
ucnextcn.k |
|- K = ( TopOpen ` W ) |
| 5 |
|
ucnextcn.s |
|- S = ( UnifSt ` V ) |
| 6 |
|
ucnextcn.t |
|- T = ( UnifSt ` ( V |`s A ) ) |
| 7 |
|
ucnextcn.u |
|- U = ( UnifSt ` W ) |
| 8 |
|
ucnextcn.v |
|- ( ph -> V e. TopSp ) |
| 9 |
|
ucnextcn.r |
|- ( ph -> V e. UnifSp ) |
| 10 |
|
ucnextcn.w |
|- ( ph -> W e. TopSp ) |
| 11 |
|
ucnextcn.z |
|- ( ph -> W e. CUnifSp ) |
| 12 |
|
ucnextcn.h |
|- ( ph -> K e. Haus ) |
| 13 |
|
ucnextcn.a |
|- ( ph -> A C_ X ) |
| 14 |
|
ucnextcn.f |
|- ( ph -> F e. ( T uCn U ) ) |
| 15 |
|
ucnextcn.c |
|- ( ph -> ( ( cls ` J ) ` A ) = X ) |
| 16 |
1 6
|
ressust |
|- ( ( V e. UnifSp /\ A C_ X ) -> T e. ( UnifOn ` A ) ) |
| 17 |
9 13 16
|
syl2anc |
|- ( ph -> T e. ( UnifOn ` A ) ) |
| 18 |
|
cuspusp |
|- ( W e. CUnifSp -> W e. UnifSp ) |
| 19 |
11 18
|
syl |
|- ( ph -> W e. UnifSp ) |
| 20 |
2 7 4
|
isusp |
|- ( W e. UnifSp <-> ( U e. ( UnifOn ` Y ) /\ K = ( unifTop ` U ) ) ) |
| 21 |
19 20
|
sylib |
|- ( ph -> ( U e. ( UnifOn ` Y ) /\ K = ( unifTop ` U ) ) ) |
| 22 |
21
|
simpld |
|- ( ph -> U e. ( UnifOn ` Y ) ) |
| 23 |
|
isucn |
|- ( ( T e. ( UnifOn ` A ) /\ U e. ( UnifOn ` Y ) ) -> ( F e. ( T uCn U ) <-> ( F : A --> Y /\ A. w e. U E. v e. T A. y e. A A. z e. A ( y v z -> ( F ` y ) w ( F ` z ) ) ) ) ) |
| 24 |
17 22 23
|
syl2anc |
|- ( ph -> ( F e. ( T uCn U ) <-> ( F : A --> Y /\ A. w e. U E. v e. T A. y e. A A. z e. A ( y v z -> ( F ` y ) w ( F ` z ) ) ) ) ) |
| 25 |
14 24
|
mpbid |
|- ( ph -> ( F : A --> Y /\ A. w e. U E. v e. T A. y e. A A. z e. A ( y v z -> ( F ` y ) w ( F ` z ) ) ) ) |
| 26 |
25
|
simpld |
|- ( ph -> F : A --> Y ) |
| 27 |
22
|
adantr |
|- ( ( ph /\ x e. X ) -> U e. ( UnifOn ` Y ) ) |
| 28 |
27
|
elfvexd |
|- ( ( ph /\ x e. X ) -> Y e. _V ) |
| 29 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
| 30 |
15
|
adantr |
|- ( ( ph /\ x e. X ) -> ( ( cls ` J ) ` A ) = X ) |
| 31 |
29 30
|
eleqtrrd |
|- ( ( ph /\ x e. X ) -> x e. ( ( cls ` J ) ` A ) ) |
| 32 |
1 3
|
istps |
|- ( V e. TopSp <-> J e. ( TopOn ` X ) ) |
| 33 |
8 32
|
sylib |
|- ( ph -> J e. ( TopOn ` X ) ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ x e. X ) -> J e. ( TopOn ` X ) ) |
| 35 |
13
|
adantr |
|- ( ( ph /\ x e. X ) -> A C_ X ) |
| 36 |
|
trnei |
|- ( ( J e. ( TopOn ` X ) /\ A C_ X /\ x e. X ) -> ( x e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) ) |
| 37 |
34 35 29 36
|
syl3anc |
|- ( ( ph /\ x e. X ) -> ( x e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) ) |
| 38 |
31 37
|
mpbid |
|- ( ( ph /\ x e. X ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) |
| 39 |
|
filfbas |
|- ( ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( fBas ` A ) ) |
| 40 |
38 39
|
syl |
|- ( ( ph /\ x e. X ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( fBas ` A ) ) |
| 41 |
26
|
adantr |
|- ( ( ph /\ x e. X ) -> F : A --> Y ) |
| 42 |
|
fmval |
|- ( ( Y e. _V /\ ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( fBas ` A ) /\ F : A --> Y ) -> ( ( Y FilMap F ) ` ( ( ( nei ` J ) ` { x } ) |`t A ) ) = ( Y filGen ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) ) ) |
| 43 |
28 40 41 42
|
syl3anc |
|- ( ( ph /\ x e. X ) -> ( ( Y FilMap F ) ` ( ( ( nei ` J ) ` { x } ) |`t A ) ) = ( Y filGen ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) ) ) |
| 44 |
17
|
adantr |
|- ( ( ph /\ x e. X ) -> T e. ( UnifOn ` A ) ) |
| 45 |
14
|
adantr |
|- ( ( ph /\ x e. X ) -> F e. ( T uCn U ) ) |
| 46 |
1 5 3
|
isusp |
|- ( V e. UnifSp <-> ( S e. ( UnifOn ` X ) /\ J = ( unifTop ` S ) ) ) |
| 47 |
9 46
|
sylib |
|- ( ph -> ( S e. ( UnifOn ` X ) /\ J = ( unifTop ` S ) ) ) |
| 48 |
47
|
simpld |
|- ( ph -> S e. ( UnifOn ` X ) ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ x e. X ) -> S e. ( UnifOn ` X ) ) |
| 50 |
9
|
adantr |
|- ( ( ph /\ x e. X ) -> V e. UnifSp ) |
| 51 |
8
|
adantr |
|- ( ( ph /\ x e. X ) -> V e. TopSp ) |
| 52 |
1 3 5
|
neipcfilu |
|- ( ( V e. UnifSp /\ V e. TopSp /\ x e. X ) -> ( ( nei ` J ) ` { x } ) e. ( CauFilU ` S ) ) |
| 53 |
50 51 29 52
|
syl3anc |
|- ( ( ph /\ x e. X ) -> ( ( nei ` J ) ` { x } ) e. ( CauFilU ` S ) ) |
| 54 |
|
0nelfb |
|- ( ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( fBas ` A ) -> -. (/) e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) |
| 55 |
40 54
|
syl |
|- ( ( ph /\ x e. X ) -> -. (/) e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) |
| 56 |
|
trcfilu |
|- ( ( S e. ( UnifOn ` X ) /\ ( ( ( nei ` J ) ` { x } ) e. ( CauFilU ` S ) /\ -. (/) e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) /\ A C_ X ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( CauFilU ` ( S |`t ( A X. A ) ) ) ) |
| 57 |
49 53 55 35 56
|
syl121anc |
|- ( ( ph /\ x e. X ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( CauFilU ` ( S |`t ( A X. A ) ) ) ) |
| 58 |
44
|
elfvexd |
|- ( ( ph /\ x e. X ) -> A e. _V ) |
| 59 |
|
ressuss |
|- ( A e. _V -> ( UnifSt ` ( V |`s A ) ) = ( ( UnifSt ` V ) |`t ( A X. A ) ) ) |
| 60 |
5
|
oveq1i |
|- ( S |`t ( A X. A ) ) = ( ( UnifSt ` V ) |`t ( A X. A ) ) |
| 61 |
59 6 60
|
3eqtr4g |
|- ( A e. _V -> T = ( S |`t ( A X. A ) ) ) |
| 62 |
61
|
fveq2d |
|- ( A e. _V -> ( CauFilU ` T ) = ( CauFilU ` ( S |`t ( A X. A ) ) ) ) |
| 63 |
58 62
|
syl |
|- ( ( ph /\ x e. X ) -> ( CauFilU ` T ) = ( CauFilU ` ( S |`t ( A X. A ) ) ) ) |
| 64 |
57 63
|
eleqtrrd |
|- ( ( ph /\ x e. X ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( CauFilU ` T ) ) |
| 65 |
|
imaeq2 |
|- ( a = b -> ( F " a ) = ( F " b ) ) |
| 66 |
65
|
cbvmptv |
|- ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) = ( b e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " b ) ) |
| 67 |
66
|
rneqi |
|- ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) = ran ( b e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " b ) ) |
| 68 |
44 27 45 64 67
|
fmucnd |
|- ( ( ph /\ x e. X ) -> ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) e. ( CauFilU ` U ) ) |
| 69 |
|
cfilufg |
|- ( ( U e. ( UnifOn ` Y ) /\ ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) e. ( CauFilU ` U ) ) -> ( Y filGen ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) ) e. ( CauFilU ` U ) ) |
| 70 |
27 68 69
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( Y filGen ran ( a e. ( ( ( nei ` J ) ` { x } ) |`t A ) |-> ( F " a ) ) ) e. ( CauFilU ` U ) ) |
| 71 |
43 70
|
eqeltrd |
|- ( ( ph /\ x e. X ) -> ( ( Y FilMap F ) ` ( ( ( nei ` J ) ` { x } ) |`t A ) ) e. ( CauFilU ` U ) ) |
| 72 |
1 2 3 4 7 8 10 11 12 13 26 15 71
|
cnextucn |
|- ( ph -> ( ( J CnExt K ) ` F ) e. ( J Cn K ) ) |