Step |
Hyp |
Ref |
Expression |
1 |
|
ucnextcn.x |
|
2 |
|
ucnextcn.y |
|
3 |
|
ucnextcn.j |
|
4 |
|
ucnextcn.k |
|
5 |
|
ucnextcn.s |
|
6 |
|
ucnextcn.t |
|
7 |
|
ucnextcn.u |
|
8 |
|
ucnextcn.v |
|
9 |
|
ucnextcn.r |
|
10 |
|
ucnextcn.w |
|
11 |
|
ucnextcn.z |
|
12 |
|
ucnextcn.h |
|
13 |
|
ucnextcn.a |
|
14 |
|
ucnextcn.f |
|
15 |
|
ucnextcn.c |
|
16 |
1 6
|
ressust |
|
17 |
9 13 16
|
syl2anc |
|
18 |
|
cuspusp |
|
19 |
11 18
|
syl |
|
20 |
2 7 4
|
isusp |
|
21 |
19 20
|
sylib |
|
22 |
21
|
simpld |
|
23 |
|
isucn |
|
24 |
17 22 23
|
syl2anc |
|
25 |
14 24
|
mpbid |
|
26 |
25
|
simpld |
|
27 |
22
|
adantr |
|
28 |
27
|
elfvexd |
|
29 |
|
simpr |
|
30 |
15
|
adantr |
|
31 |
29 30
|
eleqtrrd |
|
32 |
1 3
|
istps |
|
33 |
8 32
|
sylib |
|
34 |
33
|
adantr |
|
35 |
13
|
adantr |
|
36 |
|
trnei |
|
37 |
34 35 29 36
|
syl3anc |
|
38 |
31 37
|
mpbid |
|
39 |
|
filfbas |
|
40 |
38 39
|
syl |
|
41 |
26
|
adantr |
|
42 |
|
fmval |
|
43 |
28 40 41 42
|
syl3anc |
|
44 |
17
|
adantr |
|
45 |
14
|
adantr |
|
46 |
1 5 3
|
isusp |
|
47 |
9 46
|
sylib |
|
48 |
47
|
simpld |
|
49 |
48
|
adantr |
|
50 |
9
|
adantr |
|
51 |
8
|
adantr |
|
52 |
1 3 5
|
neipcfilu |
|
53 |
50 51 29 52
|
syl3anc |
|
54 |
|
0nelfb |
|
55 |
40 54
|
syl |
|
56 |
|
trcfilu |
|
57 |
49 53 55 35 56
|
syl121anc |
|
58 |
44
|
elfvexd |
|
59 |
|
ressuss |
|
60 |
5
|
oveq1i |
|
61 |
59 6 60
|
3eqtr4g |
|
62 |
61
|
fveq2d |
|
63 |
58 62
|
syl |
|
64 |
57 63
|
eleqtrrd |
|
65 |
|
imaeq2 |
|
66 |
65
|
cbvmptv |
|
67 |
66
|
rneqi |
|
68 |
44 27 45 64 67
|
fmucnd |
|
69 |
|
cfilufg |
|
70 |
27 68 69
|
syl2anc |
|
71 |
43 70
|
eqeltrd |
|
72 |
1 2 3 4 7 8 10 11 12 13 26 15 71
|
cnextucn |
|