Description: Extension by continuity. Theorem 2 of BourbakiTop1 p. II.20. Given an uniform space on a set X , a subset A dense in X , and a function F uniformly continuous from A to Y , that function can be extended by continuity to the whole X , and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ucnextcn.x | |
|
ucnextcn.y | |
||
ucnextcn.j | |
||
ucnextcn.k | |
||
ucnextcn.s | |
||
ucnextcn.t | |
||
ucnextcn.u | |
||
ucnextcn.v | |
||
ucnextcn.r | |
||
ucnextcn.w | |
||
ucnextcn.z | |
||
ucnextcn.h | |
||
ucnextcn.a | |
||
ucnextcn.f | |
||
ucnextcn.c | |
||
Assertion | ucnextcn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ucnextcn.x | |
|
2 | ucnextcn.y | |
|
3 | ucnextcn.j | |
|
4 | ucnextcn.k | |
|
5 | ucnextcn.s | |
|
6 | ucnextcn.t | |
|
7 | ucnextcn.u | |
|
8 | ucnextcn.v | |
|
9 | ucnextcn.r | |
|
10 | ucnextcn.w | |
|
11 | ucnextcn.z | |
|
12 | ucnextcn.h | |
|
13 | ucnextcn.a | |
|
14 | ucnextcn.f | |
|
15 | ucnextcn.c | |
|
16 | 1 6 | ressust | |
17 | 9 13 16 | syl2anc | |
18 | cuspusp | |
|
19 | 11 18 | syl | |
20 | 2 7 4 | isusp | |
21 | 19 20 | sylib | |
22 | 21 | simpld | |
23 | isucn | |
|
24 | 17 22 23 | syl2anc | |
25 | 14 24 | mpbid | |
26 | 25 | simpld | |
27 | 22 | adantr | |
28 | 27 | elfvexd | |
29 | simpr | |
|
30 | 15 | adantr | |
31 | 29 30 | eleqtrrd | |
32 | 1 3 | istps | |
33 | 8 32 | sylib | |
34 | 33 | adantr | |
35 | 13 | adantr | |
36 | trnei | |
|
37 | 34 35 29 36 | syl3anc | |
38 | 31 37 | mpbid | |
39 | filfbas | |
|
40 | 38 39 | syl | |
41 | 26 | adantr | |
42 | fmval | |
|
43 | 28 40 41 42 | syl3anc | |
44 | 17 | adantr | |
45 | 14 | adantr | |
46 | 1 5 3 | isusp | |
47 | 9 46 | sylib | |
48 | 47 | simpld | |
49 | 48 | adantr | |
50 | 9 | adantr | |
51 | 8 | adantr | |
52 | 1 3 5 | neipcfilu | |
53 | 50 51 29 52 | syl3anc | |
54 | 0nelfb | |
|
55 | 40 54 | syl | |
56 | trcfilu | |
|
57 | 49 53 55 35 56 | syl121anc | |
58 | 44 | elfvexd | |
59 | ressuss | |
|
60 | 5 | oveq1i | |
61 | 59 6 60 | 3eqtr4g | |
62 | 61 | fveq2d | |
63 | 58 62 | syl | |
64 | 57 63 | eleqtrrd | |
65 | imaeq2 | |
|
66 | 65 | cbvmptv | |
67 | 66 | rneqi | |
68 | 44 27 45 64 67 | fmucnd | |
69 | cfilufg | |
|
70 | 27 68 69 | syl2anc | |
71 | 43 70 | eqeltrd | |
72 | 1 2 3 4 7 8 10 11 12 13 26 15 71 | cnextucn | |