Metamath Proof Explorer


Theorem ucnextcn

Description: Extension by continuity. Theorem 2 of BourbakiTop1 p. II.20. Given an uniform space on a set X , a subset A dense in X , and a function F uniformly continuous from A to Y , that function can be extended by continuity to the whole X , and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018)

Ref Expression
Hypotheses ucnextcn.x X=BaseV
ucnextcn.y Y=BaseW
ucnextcn.j J=TopOpenV
ucnextcn.k K=TopOpenW
ucnextcn.s S=UnifStV
ucnextcn.t T=UnifStV𝑠A
ucnextcn.u U=UnifStW
ucnextcn.v φVTopSp
ucnextcn.r φVUnifSp
ucnextcn.w φWTopSp
ucnextcn.z φWCUnifSp
ucnextcn.h φKHaus
ucnextcn.a φAX
ucnextcn.f φFTuCnU
ucnextcn.c φclsJA=X
Assertion ucnextcn φJCnExtKFJCnK

Proof

Step Hyp Ref Expression
1 ucnextcn.x X=BaseV
2 ucnextcn.y Y=BaseW
3 ucnextcn.j J=TopOpenV
4 ucnextcn.k K=TopOpenW
5 ucnextcn.s S=UnifStV
6 ucnextcn.t T=UnifStV𝑠A
7 ucnextcn.u U=UnifStW
8 ucnextcn.v φVTopSp
9 ucnextcn.r φVUnifSp
10 ucnextcn.w φWTopSp
11 ucnextcn.z φWCUnifSp
12 ucnextcn.h φKHaus
13 ucnextcn.a φAX
14 ucnextcn.f φFTuCnU
15 ucnextcn.c φclsJA=X
16 1 6 ressust VUnifSpAXTUnifOnA
17 9 13 16 syl2anc φTUnifOnA
18 cuspusp WCUnifSpWUnifSp
19 11 18 syl φWUnifSp
20 2 7 4 isusp WUnifSpUUnifOnYK=unifTopU
21 19 20 sylib φUUnifOnYK=unifTopU
22 21 simpld φUUnifOnY
23 isucn TUnifOnAUUnifOnYFTuCnUF:AYwUvTyAzAyvzFywFz
24 17 22 23 syl2anc φFTuCnUF:AYwUvTyAzAyvzFywFz
25 14 24 mpbid φF:AYwUvTyAzAyvzFywFz
26 25 simpld φF:AY
27 22 adantr φxXUUnifOnY
28 27 elfvexd φxXYV
29 simpr φxXxX
30 15 adantr φxXclsJA=X
31 29 30 eleqtrrd φxXxclsJA
32 1 3 istps VTopSpJTopOnX
33 8 32 sylib φJTopOnX
34 33 adantr φxXJTopOnX
35 13 adantr φxXAX
36 trnei JTopOnXAXxXxclsJAneiJx𝑡AFilA
37 34 35 29 36 syl3anc φxXxclsJAneiJx𝑡AFilA
38 31 37 mpbid φxXneiJx𝑡AFilA
39 filfbas neiJx𝑡AFilAneiJx𝑡AfBasA
40 38 39 syl φxXneiJx𝑡AfBasA
41 26 adantr φxXF:AY
42 fmval YVneiJx𝑡AfBasAF:AYYFilMapFneiJx𝑡A=YfilGenrananeiJx𝑡AFa
43 28 40 41 42 syl3anc φxXYFilMapFneiJx𝑡A=YfilGenrananeiJx𝑡AFa
44 17 adantr φxXTUnifOnA
45 14 adantr φxXFTuCnU
46 1 5 3 isusp VUnifSpSUnifOnXJ=unifTopS
47 9 46 sylib φSUnifOnXJ=unifTopS
48 47 simpld φSUnifOnX
49 48 adantr φxXSUnifOnX
50 9 adantr φxXVUnifSp
51 8 adantr φxXVTopSp
52 1 3 5 neipcfilu VUnifSpVTopSpxXneiJxCauFilUS
53 50 51 29 52 syl3anc φxXneiJxCauFilUS
54 0nelfb neiJx𝑡AfBasA¬neiJx𝑡A
55 40 54 syl φxX¬neiJx𝑡A
56 trcfilu SUnifOnXneiJxCauFilUS¬neiJx𝑡AAXneiJx𝑡ACauFilUS𝑡A×A
57 49 53 55 35 56 syl121anc φxXneiJx𝑡ACauFilUS𝑡A×A
58 44 elfvexd φxXAV
59 ressuss AVUnifStV𝑠A=UnifStV𝑡A×A
60 5 oveq1i S𝑡A×A=UnifStV𝑡A×A
61 59 6 60 3eqtr4g AVT=S𝑡A×A
62 61 fveq2d AVCauFilUT=CauFilUS𝑡A×A
63 58 62 syl φxXCauFilUT=CauFilUS𝑡A×A
64 57 63 eleqtrrd φxXneiJx𝑡ACauFilUT
65 imaeq2 a=bFa=Fb
66 65 cbvmptv aneiJx𝑡AFa=bneiJx𝑡AFb
67 66 rneqi rananeiJx𝑡AFa=ranbneiJx𝑡AFb
68 44 27 45 64 67 fmucnd φxXrananeiJx𝑡AFaCauFilUU
69 cfilufg UUnifOnYrananeiJx𝑡AFaCauFilUUYfilGenrananeiJx𝑡AFaCauFilUU
70 27 68 69 syl2anc φxXYfilGenrananeiJx𝑡AFaCauFilUU
71 43 70 eqeltrd φxXYFilMapFneiJx𝑡ACauFilUU
72 1 2 3 4 7 8 10 11 12 13 26 15 71 cnextucn φJCnExtKFJCnK