| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnextucn.x |
|
| 2 |
|
cnextucn.y |
|
| 3 |
|
cnextucn.j |
|
| 4 |
|
cnextucn.k |
|
| 5 |
|
cnextucn.u |
|
| 6 |
|
cnextucn.v |
|
| 7 |
|
cnextucn.t |
|
| 8 |
|
cnextucn.w |
|
| 9 |
|
cnextucn.h |
|
| 10 |
|
cnextucn.a |
|
| 11 |
|
cnextucn.f |
|
| 12 |
|
cnextucn.c |
|
| 13 |
|
cnextucn.l |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
3
|
tpstop |
|
| 17 |
6 16
|
syl |
|
| 18 |
2 4
|
tpsuni |
|
| 19 |
7 18
|
syl |
|
| 20 |
19
|
feq3d |
|
| 21 |
11 20
|
mpbid |
|
| 22 |
1 3
|
tpsuni |
|
| 23 |
6 22
|
syl |
|
| 24 |
10 23
|
sseqtrd |
|
| 25 |
12 23
|
eqtrd |
|
| 26 |
2 4
|
istps |
|
| 27 |
7 26
|
sylib |
|
| 28 |
27
|
adantr |
|
| 29 |
23
|
eleq2d |
|
| 30 |
29
|
biimpar |
|
| 31 |
12
|
adantr |
|
| 32 |
30 31
|
eleqtrrd |
|
| 33 |
|
toptopon2 |
|
| 34 |
17 33
|
sylib |
|
| 35 |
|
fveq2 |
|
| 36 |
35
|
eleq2d |
|
| 37 |
23 36
|
syl |
|
| 38 |
34 37
|
mpbird |
|
| 39 |
38
|
adantr |
|
| 40 |
10
|
adantr |
|
| 41 |
|
trnei |
|
| 42 |
39 40 30 41
|
syl3anc |
|
| 43 |
32 42
|
mpbid |
|
| 44 |
11
|
adantr |
|
| 45 |
|
flfval |
|
| 46 |
28 43 44 45
|
syl3anc |
|
| 47 |
8
|
adantr |
|
| 48 |
30 13
|
syldan |
|
| 49 |
5
|
fveq2i |
|
| 50 |
48 49
|
eleqtrdi |
|
| 51 |
2
|
fvexi |
|
| 52 |
|
filfbas |
|
| 53 |
43 52
|
syl |
|
| 54 |
|
fmfil |
|
| 55 |
51 53 44 54
|
mp3an2i |
|
| 56 |
2 4
|
cuspcvg |
|
| 57 |
47 50 55 56
|
syl3anc |
|
| 58 |
46 57
|
eqnetrd |
|
| 59 |
|
cuspusp |
|
| 60 |
8 59
|
syl |
|
| 61 |
4
|
uspreg |
|
| 62 |
60 9 61
|
syl2anc |
|
| 63 |
14 15 17 9 21 24 25 58 62
|
cnextcn |
|