Metamath Proof Explorer


Definition df-flim

Description: Define a function (indexed by a topology j ) whose value is the limits of a filter f . (Contributed by Jeff Hankins, 4-Sep-2009)

Ref Expression
Assertion df-flim fLim=jTop,franFilxj|neijxff𝒫j

Detailed syntax breakdown

Step Hyp Ref Expression
0 cflim classfLim
1 vj setvarj
2 ctop classTop
3 vf setvarf
4 cfil classFil
5 4 crn classranFil
6 5 cuni classranFil
7 vx setvarx
8 1 cv setvarj
9 8 cuni classj
10 cnei classnei
11 8 10 cfv classneij
12 7 cv setvarx
13 12 csn classx
14 13 11 cfv classneijx
15 3 cv setvarf
16 14 15 wss wffneijxf
17 9 cpw class𝒫j
18 15 17 wss wfff𝒫j
19 16 18 wa wffneijxff𝒫j
20 19 7 9 crab classxj|neijxff𝒫j
21 1 3 2 6 20 cmpo classjTop,franFilxj|neijxff𝒫j
22 0 21 wceq wfffLim=jTop,franFilxj|neijxff𝒫j