| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnextucn.x |
⊢ 𝑋 = ( Base ‘ 𝑉 ) |
| 2 |
|
cnextucn.y |
⊢ 𝑌 = ( Base ‘ 𝑊 ) |
| 3 |
|
cnextucn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑉 ) |
| 4 |
|
cnextucn.k |
⊢ 𝐾 = ( TopOpen ‘ 𝑊 ) |
| 5 |
|
cnextucn.u |
⊢ 𝑈 = ( UnifSt ‘ 𝑊 ) |
| 6 |
|
cnextucn.v |
⊢ ( 𝜑 → 𝑉 ∈ TopSp ) |
| 7 |
|
cnextucn.t |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
| 8 |
|
cnextucn.w |
⊢ ( 𝜑 → 𝑊 ∈ CUnifSp ) |
| 9 |
|
cnextucn.h |
⊢ ( 𝜑 → 𝐾 ∈ Haus ) |
| 10 |
|
cnextucn.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
| 11 |
|
cnextucn.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑌 ) |
| 12 |
|
cnextucn.c |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) |
| 13 |
|
cnextucn.l |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( CauFilu ‘ 𝑈 ) ) |
| 14 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 15 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 16 |
3
|
tpstop |
⊢ ( 𝑉 ∈ TopSp → 𝐽 ∈ Top ) |
| 17 |
6 16
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 18 |
2 4
|
tpsuni |
⊢ ( 𝑊 ∈ TopSp → 𝑌 = ∪ 𝐾 ) |
| 19 |
7 18
|
syl |
⊢ ( 𝜑 → 𝑌 = ∪ 𝐾 ) |
| 20 |
19
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝑌 ↔ 𝐹 : 𝐴 ⟶ ∪ 𝐾 ) ) |
| 21 |
11 20
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ∪ 𝐾 ) |
| 22 |
1 3
|
tpsuni |
⊢ ( 𝑉 ∈ TopSp → 𝑋 = ∪ 𝐽 ) |
| 23 |
6 22
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 24 |
10 23
|
sseqtrd |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝐽 ) |
| 25 |
12 23
|
eqtrd |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = ∪ 𝐽 ) |
| 26 |
2 4
|
istps |
⊢ ( 𝑊 ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 27 |
7 26
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 29 |
23
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝐽 ) ) |
| 30 |
29
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ 𝑋 ) |
| 31 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝑋 ) |
| 32 |
30 31
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 33 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 34 |
17 33
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑋 = ∪ 𝐽 → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ∪ 𝐽 ) ) |
| 36 |
35
|
eleq2d |
⊢ ( 𝑋 = ∪ 𝐽 → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) ) |
| 37 |
23 36
|
syl |
⊢ ( 𝜑 → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) ) |
| 38 |
34 37
|
mpbird |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 40 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐴 ⊆ 𝑋 ) |
| 41 |
|
trnei |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
| 42 |
39 40 30 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
| 43 |
32 42
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 44 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝐹 : 𝐴 ⟶ 𝑌 ) |
| 45 |
|
flfval |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝑌 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( 𝐾 fLim ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ) ) |
| 46 |
28 43 44 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( 𝐾 fLim ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ) ) |
| 47 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → 𝑊 ∈ CUnifSp ) |
| 48 |
30 13
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( CauFilu ‘ 𝑈 ) ) |
| 49 |
5
|
fveq2i |
⊢ ( CauFilu ‘ 𝑈 ) = ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) |
| 50 |
48 49
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) |
| 51 |
2
|
fvexi |
⊢ 𝑌 ∈ V |
| 52 |
|
filfbas |
⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
| 53 |
43 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
| 54 |
|
fmfil |
⊢ ( ( 𝑌 ∈ V ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝑌 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( Fil ‘ 𝑌 ) ) |
| 55 |
51 53 44 54
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( Fil ‘ 𝑌 ) ) |
| 56 |
2 4
|
cuspcvg |
⊢ ( ( 𝑊 ∈ CUnifSp ∧ ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ∧ ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐾 fLim ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ) ≠ ∅ ) |
| 57 |
47 50 55 56
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝐾 fLim ( ( 𝑌 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ) ≠ ∅ ) |
| 58 |
46 57
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) |
| 59 |
|
cuspusp |
⊢ ( 𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp ) |
| 60 |
8 59
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ UnifSp ) |
| 61 |
4
|
uspreg |
⊢ ( ( 𝑊 ∈ UnifSp ∧ 𝐾 ∈ Haus ) → 𝐾 ∈ Reg ) |
| 62 |
60 9 61
|
syl2anc |
⊢ ( 𝜑 → 𝐾 ∈ Reg ) |
| 63 |
14 15 17 9 21 24 25 58 62
|
cnextcn |
⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) |