| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cuspcvg.1 |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
cuspcvg.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 3 |
|
eleq1 |
⊢ ( 𝑐 = 𝐶 → ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ↔ 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) ) |
| 4 |
2
|
eqcomi |
⊢ ( TopOpen ‘ 𝑊 ) = 𝐽 |
| 5 |
4
|
a1i |
⊢ ( 𝑐 = 𝐶 → ( TopOpen ‘ 𝑊 ) = 𝐽 ) |
| 6 |
|
id |
⊢ ( 𝑐 = 𝐶 → 𝑐 = 𝐶 ) |
| 7 |
5 6
|
oveq12d |
⊢ ( 𝑐 = 𝐶 → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) = ( 𝐽 fLim 𝐶 ) ) |
| 8 |
7
|
neeq1d |
⊢ ( 𝑐 = 𝐶 → ( ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ↔ ( 𝐽 fLim 𝐶 ) ≠ ∅ ) ) |
| 9 |
3 8
|
imbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ↔ ( 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ ) ) ) |
| 10 |
|
iscusp |
⊢ ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) ) |
| 11 |
10
|
simprbi |
⊢ ( 𝑊 ∈ CUnifSp → ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) |
| 13 |
|
simpr |
⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → 𝐶 ∈ ( Fil ‘ 𝐵 ) ) |
| 14 |
1
|
fveq2i |
⊢ ( Fil ‘ 𝐵 ) = ( Fil ‘ ( Base ‘ 𝑊 ) ) |
| 15 |
13 14
|
eleqtrdi |
⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → 𝐶 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ) |
| 16 |
9 12 15
|
rspcdva |
⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → ( 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ ) ) |
| 17 |
16
|
3impia |
⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ∧ 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ ) |
| 18 |
17
|
3com23 |
⊢ ( ( 𝑊 ∈ CUnifSp ∧ 𝐶 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) ∧ 𝐶 ∈ ( Fil ‘ 𝐵 ) ) → ( 𝐽 fLim 𝐶 ) ≠ ∅ ) |