Metamath Proof Explorer


Theorem cuspusp

Description: A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017)

Ref Expression
Assertion cuspusp ( 𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp )

Proof

Step Hyp Ref Expression
1 iscusp ( 𝑊 ∈ CUnifSp ↔ ( 𝑊 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ ( Base ‘ 𝑊 ) ) ( 𝑐 ∈ ( CauFilu ‘ ( UnifSt ‘ 𝑊 ) ) → ( ( TopOpen ‘ 𝑊 ) fLim 𝑐 ) ≠ ∅ ) ) )
2 1 simplbi ( 𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp )