Metamath Proof Explorer


Definition df-cnext

Description: Define the continuous extension of a given function. (Contributed by Thierry Arnoux, 1-Dec-2017)

Ref Expression
Assertion df-cnext CnExt=jTop,kTopfk𝑝𝑚jxclsjdomfx×kfLimfneijx𝑡domff

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnext classCnExt
1 vj setvarj
2 ctop classTop
3 vk setvark
4 vf setvarf
5 3 cv setvark
6 5 cuni classk
7 cpm class𝑝𝑚
8 1 cv setvarj
9 8 cuni classj
10 6 9 7 co classk𝑝𝑚j
11 vx setvarx
12 ccl classcls
13 8 12 cfv classclsj
14 4 cv setvarf
15 14 cdm classdomf
16 15 13 cfv classclsjdomf
17 11 cv setvarx
18 17 csn classx
19 cflf classfLimf
20 cnei classnei
21 8 20 cfv classneij
22 18 21 cfv classneijx
23 crest class𝑡
24 22 15 23 co classneijx𝑡domf
25 5 24 19 co classkfLimfneijx𝑡domf
26 14 25 cfv classkfLimfneijx𝑡domff
27 18 26 cxp classx×kfLimfneijx𝑡domff
28 11 16 27 ciun classxclsjdomfx×kfLimfneijx𝑡domff
29 4 10 28 cmpt classfk𝑝𝑚jxclsjdomfx×kfLimfneijx𝑡domff
30 1 3 2 2 29 cmpo classjTop,kTopfk𝑝𝑚jxclsjdomfx×kfLimfneijx𝑡domff
31 0 30 wceq wffCnExt=jTop,kTopfk𝑝𝑚jxclsjdomfx×kfLimfneijx𝑡domff