Metamath Proof Explorer


Theorem flfval

Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Assertion flfval JTopOnXLFilYF:YXJfLimfLF=JfLimXFilMapFL

Proof

Step Hyp Ref Expression
1 toponmax JTopOnXXJ
2 filtop LFilYYL
3 elmapg XJYLFXYF:YX
4 1 2 3 syl2an JTopOnXLFilYFXYF:YX
5 4 biimpar JTopOnXLFilYF:YXFXY
6 flffval JTopOnXLFilYJfLimfL=fXYJfLimXFilMapfL
7 6 fveq1d JTopOnXLFilYJfLimfLF=fXYJfLimXFilMapfLF
8 oveq2 f=FXFilMapf=XFilMapF
9 8 fveq1d f=FXFilMapfL=XFilMapFL
10 9 oveq2d f=FJfLimXFilMapfL=JfLimXFilMapFL
11 eqid fXYJfLimXFilMapfL=fXYJfLimXFilMapfL
12 ovex JfLimXFilMapFLV
13 10 11 12 fvmpt FXYfXYJfLimXFilMapfLF=JfLimXFilMapFL
14 7 13 sylan9eq JTopOnXLFilYFXYJfLimfLF=JfLimXFilMapFL
15 5 14 syldan JTopOnXLFilYF:YXJfLimfLF=JfLimXFilMapFL
16 15 3impa JTopOnXLFilYF:YXJfLimfLF=JfLimXFilMapFL