Metamath Proof Explorer


Theorem flffval

Description: Given a topology and a filtered set, return the convergence function on the functions from the filtered set to the base set of the topological space. (Contributed by Jeff Hankins, 14-Oct-2009) (Revised by Mario Carneiro, 15-Dec-2013) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Assertion flffval J TopOn X L Fil Y J fLimf L = f X Y J fLim X FilMap f L

Proof

Step Hyp Ref Expression
1 topontop J TopOn X J Top
2 fvssunirn Fil Y ran Fil
3 2 sseli L Fil Y L ran Fil
4 unieq x = J x = J
5 unieq y = L y = L
6 4 5 oveqan12d x = J y = L x y = J L
7 simpl x = J y = L x = J
8 4 adantr x = J y = L x = J
9 8 oveq1d x = J y = L x FilMap f = J FilMap f
10 simpr x = J y = L y = L
11 9 10 fveq12d x = J y = L x FilMap f y = J FilMap f L
12 7 11 oveq12d x = J y = L x fLim x FilMap f y = J fLim J FilMap f L
13 6 12 mpteq12dv x = J y = L f x y x fLim x FilMap f y = f J L J fLim J FilMap f L
14 df-flf fLimf = x Top , y ran Fil f x y x fLim x FilMap f y
15 ovex J L V
16 15 mptex f J L J fLim J FilMap f L V
17 13 14 16 ovmpoa J Top L ran Fil J fLimf L = f J L J fLim J FilMap f L
18 1 3 17 syl2an J TopOn X L Fil Y J fLimf L = f J L J fLim J FilMap f L
19 toponuni J TopOn X X = J
20 19 eqcomd J TopOn X J = X
21 filunibas L Fil Y L = Y
22 20 21 oveqan12d J TopOn X L Fil Y J L = X Y
23 20 adantr J TopOn X L Fil Y J = X
24 23 oveq1d J TopOn X L Fil Y J FilMap f = X FilMap f
25 24 fveq1d J TopOn X L Fil Y J FilMap f L = X FilMap f L
26 25 oveq2d J TopOn X L Fil Y J fLim J FilMap f L = J fLim X FilMap f L
27 22 26 mpteq12dv J TopOn X L Fil Y f J L J fLim J FilMap f L = f X Y J fLim X FilMap f L
28 18 27 eqtrd J TopOn X L Fil Y J fLimf L = f X Y J fLim X FilMap f L