Metamath Proof Explorer


Definition df-cfilu

Description: Define the set of Cauchy filter bases on a uniform space. A Cauchy filter base is a filter base on the set such that for every entourage v , there is an element a of the filter "small enough in v " i.e. such that every pair { x , y } of points in a is related by v ". Definition 2 of BourbakiTop1 p. II.13. (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Assertion df-cfilu CauFilU=uranUnifOnffBasdomu|vuafa×av

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccfilu classCauFilU
1 vu setvaru
2 cust classUnifOn
3 2 crn classranUnifOn
4 3 cuni classranUnifOn
5 vf setvarf
6 cfbas classfBas
7 1 cv setvaru
8 7 cuni classu
9 8 cdm classdomu
10 9 6 cfv classfBasdomu
11 vv setvarv
12 va setvara
13 5 cv setvarf
14 12 cv setvara
15 14 14 cxp classa×a
16 11 cv setvarv
17 15 16 wss wffa×av
18 17 12 13 wrex wffafa×av
19 18 11 7 wral wffvuafa×av
20 19 5 10 crab classffBasdomu|vuafa×av
21 1 4 20 cmpt classuranUnifOnffBasdomu|vuafa×av
22 0 21 wceq wffCauFilU=uranUnifOnffBasdomu|vuafa×av