Metamath Proof Explorer


Theorem neipcfilu

Description: In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018)

Ref Expression
Hypotheses neipcfilu.x X = Base W
neipcfilu.j J = TopOpen W
neipcfilu.u U = UnifSt W
Assertion neipcfilu W UnifSp W TopSp P X nei J P CauFilU U

Proof

Step Hyp Ref Expression
1 neipcfilu.x X = Base W
2 neipcfilu.j J = TopOpen W
3 neipcfilu.u U = UnifSt W
4 simp2 W UnifSp W TopSp P X W TopSp
5 1 2 istps W TopSp J TopOn X
6 4 5 sylib W UnifSp W TopSp P X J TopOn X
7 simp3 W UnifSp W TopSp P X P X
8 7 snssd W UnifSp W TopSp P X P X
9 7 snn0d W UnifSp W TopSp P X P
10 neifil J TopOn X P X P nei J P Fil X
11 6 8 9 10 syl3anc W UnifSp W TopSp P X nei J P Fil X
12 filfbas nei J P Fil X nei J P fBas X
13 11 12 syl W UnifSp W TopSp P X nei J P fBas X
14 eqid w P = w P
15 imaeq1 v = w v P = w P
16 15 rspceeqv w U w P = w P v U w P = v P
17 14 16 mpan2 w U v U w P = v P
18 vex w V
19 18 imaex w P V
20 eqid v U v P = v U v P
21 20 elrnmpt w P V w P ran v U v P v U w P = v P
22 19 21 ax-mp w P ran v U v P v U w P = v P
23 17 22 sylibr w U w P ran v U v P
24 23 ad2antlr W UnifSp W TopSp P X v U w U w P × w P v w P ran v U v P
25 1 3 2 isusp W UnifSp U UnifOn X J = unifTop U
26 25 simplbi W UnifSp U UnifOn X
27 26 3ad2ant1 W UnifSp W TopSp P X U UnifOn X
28 eqid unifTop U = unifTop U
29 28 utopsnneip U UnifOn X P X nei unifTop U P = ran v U v P
30 27 7 29 syl2anc W UnifSp W TopSp P X nei unifTop U P = ran v U v P
31 30 eleq2d W UnifSp W TopSp P X w P nei unifTop U P w P ran v U v P
32 31 ad3antrrr W UnifSp W TopSp P X v U w U w P × w P v w P nei unifTop U P w P ran v U v P
33 24 32 mpbird W UnifSp W TopSp P X v U w U w P × w P v w P nei unifTop U P
34 simpl1 W UnifSp W TopSp P X v U w U w P × w P v W UnifSp
35 34 3anassrs W UnifSp W TopSp P X v U w U w P × w P v W UnifSp
36 25 simprbi W UnifSp J = unifTop U
37 35 36 syl W UnifSp W TopSp P X v U w U w P × w P v J = unifTop U
38 37 fveq2d W UnifSp W TopSp P X v U w U w P × w P v nei J = nei unifTop U
39 38 fveq1d W UnifSp W TopSp P X v U w U w P × w P v nei J P = nei unifTop U P
40 33 39 eleqtrrd W UnifSp W TopSp P X v U w U w P × w P v w P nei J P
41 simpr W UnifSp W TopSp P X v U w U w P × w P v w P × w P v
42 id a = w P a = w P
43 42 sqxpeqd a = w P a × a = w P × w P
44 43 sseq1d a = w P a × a v w P × w P v
45 44 rspcev w P nei J P w P × w P v a nei J P a × a v
46 40 41 45 syl2anc W UnifSp W TopSp P X v U w U w P × w P v a nei J P a × a v
47 27 adantr W UnifSp W TopSp P X v U U UnifOn X
48 7 adantr W UnifSp W TopSp P X v U P X
49 simpr W UnifSp W TopSp P X v U v U
50 simpll1 U UnifOn X P X v U u U u u v U UnifOn X
51 simplr U UnifOn X P X v U u U u u v u U
52 ustexsym U UnifOn X u U w U w -1 = w w u
53 50 51 52 syl2anc U UnifOn X P X v U u U u u v w U w -1 = w w u
54 50 ad2antrr U UnifOn X P X v U u U u u v w U w -1 = w w u U UnifOn X
55 simplr U UnifOn X P X v U u U u u v w U w -1 = w w u w U
56 ustssxp U UnifOn X w U w X × X
57 54 55 56 syl2anc U UnifOn X P X v U u U u u v w U w -1 = w w u w X × X
58 simpll2 U UnifOn X P X v U u U u u v w U w -1 = w w u P X
59 58 3anassrs U UnifOn X P X v U u U u u v w U w -1 = w w u P X
60 ustneism w X × X P X w P × w P w w -1
61 57 59 60 syl2anc U UnifOn X P X v U u U u u v w U w -1 = w w u w P × w P w w -1
62 simprl U UnifOn X P X v U u U u u v w U w -1 = w w u w -1 = w
63 62 coeq2d U UnifOn X P X v U u U u u v w U w -1 = w w u w w -1 = w w
64 coss1 w u w w u w
65 coss2 w u u w u u
66 64 65 sstrd w u w w u u
67 66 ad2antll U UnifOn X P X v U u U u u v w U w -1 = w w u w w u u
68 simpllr U UnifOn X P X v U u U u u v w U w -1 = w w u u u v
69 67 68 sstrd U UnifOn X P X v U u U u u v w U w -1 = w w u w w v
70 63 69 eqsstrd U UnifOn X P X v U u U u u v w U w -1 = w w u w w -1 v
71 61 70 sstrd U UnifOn X P X v U u U u u v w U w -1 = w w u w P × w P v
72 71 ex U UnifOn X P X v U u U u u v w U w -1 = w w u w P × w P v
73 72 reximdva U UnifOn X P X v U u U u u v w U w -1 = w w u w U w P × w P v
74 53 73 mpd U UnifOn X P X v U u U u u v w U w P × w P v
75 ustexhalf U UnifOn X v U u U u u v
76 75 3adant2 U UnifOn X P X v U u U u u v
77 74 76 r19.29a U UnifOn X P X v U w U w P × w P v
78 47 48 49 77 syl3anc W UnifSp W TopSp P X v U w U w P × w P v
79 46 78 r19.29a W UnifSp W TopSp P X v U a nei J P a × a v
80 79 ralrimiva W UnifSp W TopSp P X v U a nei J P a × a v
81 iscfilu U UnifOn X nei J P CauFilU U nei J P fBas X v U a nei J P a × a v
82 27 81 syl W UnifSp W TopSp P X nei J P CauFilU U nei J P fBas X v U a nei J P a × a v
83 13 80 82 mpbir2and W UnifSp W TopSp P X nei J P CauFilU U