Metamath Proof Explorer


Theorem neipcfilu

Description: In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018)

Ref Expression
Hypotheses neipcfilu.x X=BaseW
neipcfilu.j J=TopOpenW
neipcfilu.u U=UnifStW
Assertion neipcfilu WUnifSpWTopSpPXneiJPCauFilUU

Proof

Step Hyp Ref Expression
1 neipcfilu.x X=BaseW
2 neipcfilu.j J=TopOpenW
3 neipcfilu.u U=UnifStW
4 simp2 WUnifSpWTopSpPXWTopSp
5 1 2 istps WTopSpJTopOnX
6 4 5 sylib WUnifSpWTopSpPXJTopOnX
7 simp3 WUnifSpWTopSpPXPX
8 7 snssd WUnifSpWTopSpPXPX
9 7 snn0d WUnifSpWTopSpPXP
10 neifil JTopOnXPXPneiJPFilX
11 6 8 9 10 syl3anc WUnifSpWTopSpPXneiJPFilX
12 filfbas neiJPFilXneiJPfBasX
13 11 12 syl WUnifSpWTopSpPXneiJPfBasX
14 eqid wP=wP
15 imaeq1 v=wvP=wP
16 15 rspceeqv wUwP=wPvUwP=vP
17 14 16 mpan2 wUvUwP=vP
18 vex wV
19 18 imaex wPV
20 eqid vUvP=vUvP
21 20 elrnmpt wPVwPranvUvPvUwP=vP
22 19 21 ax-mp wPranvUvPvUwP=vP
23 17 22 sylibr wUwPranvUvP
24 23 ad2antlr WUnifSpWTopSpPXvUwUwP×wPvwPranvUvP
25 1 3 2 isusp WUnifSpUUnifOnXJ=unifTopU
26 25 simplbi WUnifSpUUnifOnX
27 26 3ad2ant1 WUnifSpWTopSpPXUUnifOnX
28 eqid unifTopU=unifTopU
29 28 utopsnneip UUnifOnXPXneiunifTopUP=ranvUvP
30 27 7 29 syl2anc WUnifSpWTopSpPXneiunifTopUP=ranvUvP
31 30 eleq2d WUnifSpWTopSpPXwPneiunifTopUPwPranvUvP
32 31 ad3antrrr WUnifSpWTopSpPXvUwUwP×wPvwPneiunifTopUPwPranvUvP
33 24 32 mpbird WUnifSpWTopSpPXvUwUwP×wPvwPneiunifTopUP
34 simpl1 WUnifSpWTopSpPXvUwUwP×wPvWUnifSp
35 34 3anassrs WUnifSpWTopSpPXvUwUwP×wPvWUnifSp
36 25 simprbi WUnifSpJ=unifTopU
37 35 36 syl WUnifSpWTopSpPXvUwUwP×wPvJ=unifTopU
38 37 fveq2d WUnifSpWTopSpPXvUwUwP×wPvneiJ=neiunifTopU
39 38 fveq1d WUnifSpWTopSpPXvUwUwP×wPvneiJP=neiunifTopUP
40 33 39 eleqtrrd WUnifSpWTopSpPXvUwUwP×wPvwPneiJP
41 simpr WUnifSpWTopSpPXvUwUwP×wPvwP×wPv
42 id a=wPa=wP
43 42 sqxpeqd a=wPa×a=wP×wP
44 43 sseq1d a=wPa×avwP×wPv
45 44 rspcev wPneiJPwP×wPvaneiJPa×av
46 40 41 45 syl2anc WUnifSpWTopSpPXvUwUwP×wPvaneiJPa×av
47 27 adantr WUnifSpWTopSpPXvUUUnifOnX
48 7 adantr WUnifSpWTopSpPXvUPX
49 simpr WUnifSpWTopSpPXvUvU
50 simpll1 UUnifOnXPXvUuUuuvUUnifOnX
51 simplr UUnifOnXPXvUuUuuvuU
52 ustexsym UUnifOnXuUwUw-1=wwu
53 50 51 52 syl2anc UUnifOnXPXvUuUuuvwUw-1=wwu
54 50 ad2antrr UUnifOnXPXvUuUuuvwUw-1=wwuUUnifOnX
55 simplr UUnifOnXPXvUuUuuvwUw-1=wwuwU
56 ustssxp UUnifOnXwUwX×X
57 54 55 56 syl2anc UUnifOnXPXvUuUuuvwUw-1=wwuwX×X
58 simpll2 UUnifOnXPXvUuUuuvwUw-1=wwuPX
59 58 3anassrs UUnifOnXPXvUuUuuvwUw-1=wwuPX
60 ustneism wX×XPXwP×wPww-1
61 57 59 60 syl2anc UUnifOnXPXvUuUuuvwUw-1=wwuwP×wPww-1
62 simprl UUnifOnXPXvUuUuuvwUw-1=wwuw-1=w
63 62 coeq2d UUnifOnXPXvUuUuuvwUw-1=wwuww-1=ww
64 coss1 wuwwuw
65 coss2 wuuwuu
66 64 65 sstrd wuwwuu
67 66 ad2antll UUnifOnXPXvUuUuuvwUw-1=wwuwwuu
68 simpllr UUnifOnXPXvUuUuuvwUw-1=wwuuuv
69 67 68 sstrd UUnifOnXPXvUuUuuvwUw-1=wwuwwv
70 63 69 eqsstrd UUnifOnXPXvUuUuuvwUw-1=wwuww-1v
71 61 70 sstrd UUnifOnXPXvUuUuuvwUw-1=wwuwP×wPv
72 71 ex UUnifOnXPXvUuUuuvwUw-1=wwuwP×wPv
73 72 reximdva UUnifOnXPXvUuUuuvwUw-1=wwuwUwP×wPv
74 53 73 mpd UUnifOnXPXvUuUuuvwUwP×wPv
75 ustexhalf UUnifOnXvUuUuuv
76 75 3adant2 UUnifOnXPXvUuUuuv
77 74 76 r19.29a UUnifOnXPXvUwUwP×wPv
78 47 48 49 77 syl3anc WUnifSpWTopSpPXvUwUwP×wPv
79 46 78 r19.29a WUnifSpWTopSpPXvUaneiJPa×av
80 79 ralrimiva WUnifSpWTopSpPXvUaneiJPa×av
81 iscfilu UUnifOnXneiJPCauFilUUneiJPfBasXvUaneiJPa×av
82 27 81 syl WUnifSpWTopSpPXneiJPCauFilUUneiJPfBasXvUaneiJPa×av
83 13 80 82 mpbir2and WUnifSpWTopSpPXneiJPCauFilUU