Metamath Proof Explorer


Theorem utopsnneip

Description: The neighborhoods of a point P for the topology induced by an uniform space U . (Contributed by Thierry Arnoux, 13-Jan-2018)

Ref Expression
Hypothesis utoptop.1 J=unifTopU
Assertion utopsnneip UUnifOnXPXneiJP=ranvUvP

Proof

Step Hyp Ref Expression
1 utoptop.1 J=unifTopU
2 fveq2 r=pqXranvUvqr=qXranvUvqp
3 2 eleq2d r=pbqXranvUvqrbqXranvUvqp
4 3 cbvralvw rbbqXranvUvqrpbbqXranvUvqp
5 eleq1w b=abqXranvUvqpaqXranvUvqp
6 5 raleqbi1dv b=apbbqXranvUvqppaaqXranvUvqp
7 4 6 bitrid b=arbbqXranvUvqrpaaqXranvUvqp
8 7 cbvrabv b𝒫X|rbbqXranvUvqr=a𝒫X|paaqXranvUvqp
9 simpl q=pvUq=p
10 9 sneqd q=pvUq=p
11 10 imaeq2d q=pvUvq=vp
12 11 mpteq2dva q=pvUvq=vUvp
13 12 rneqd q=pranvUvq=ranvUvp
14 13 cbvmptv qXranvUvq=pXranvUvp
15 1 8 14 utopsnneiplem UUnifOnXPXneiJP=ranvUvP