| Step | Hyp | Ref | Expression | 
						
							| 1 |  | toponuni |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 |  | topontop |  | 
						
							| 4 | 3 | adantr |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 | 5 2 | sseqtrd |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 7 | neiuni |  | 
						
							| 9 | 4 6 8 | syl2anc |  | 
						
							| 10 | 2 9 | eqtrd |  | 
						
							| 11 |  | eqimss2 |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | sspwuni |  | 
						
							| 14 | 12 13 | sylibr |  | 
						
							| 15 | 14 | 3adant3 |  | 
						
							| 16 |  | 0nnei |  | 
						
							| 17 | 3 16 | sylan |  | 
						
							| 18 | 17 | 3adant2 |  | 
						
							| 19 | 7 | tpnei |  | 
						
							| 20 | 19 | biimpa |  | 
						
							| 21 | 4 6 20 | syl2anc |  | 
						
							| 22 | 2 21 | eqeltrd |  | 
						
							| 23 | 22 | 3adant3 |  | 
						
							| 24 | 15 18 23 | 3jca |  | 
						
							| 25 |  | elpwi |  | 
						
							| 26 | 4 | ad2antrr |  | 
						
							| 27 |  | simprl |  | 
						
							| 28 |  | simprr |  | 
						
							| 29 |  | simplr |  | 
						
							| 30 | 2 | ad2antrr |  | 
						
							| 31 | 29 30 | sseqtrd |  | 
						
							| 32 | 7 | ssnei2 |  | 
						
							| 33 | 26 27 28 31 32 | syl22anc |  | 
						
							| 34 | 33 | rexlimdvaa |  | 
						
							| 35 | 25 34 | sylan2 |  | 
						
							| 36 | 35 | ralrimiva |  | 
						
							| 37 | 36 | 3adant3 |  | 
						
							| 38 |  | innei |  | 
						
							| 39 | 38 | 3expib |  | 
						
							| 40 | 3 39 | syl |  | 
						
							| 41 | 40 | 3ad2ant1 |  | 
						
							| 42 | 41 | ralrimivv |  | 
						
							| 43 |  | isfil2 |  | 
						
							| 44 | 24 37 42 43 | syl3anbrc |  |