Metamath Proof Explorer


Theorem ssnei2

Description: Any subset M of X containing a neighborhood N of a set S is a neighborhood of this set. Generalization to subsets of Property V_i of BourbakiTop1 p. I.3. (Contributed by FL, 2-Oct-2006)

Ref Expression
Hypothesis neips.1 X=J
Assertion ssnei2 JTopNneiJSNMMXMneiJS

Proof

Step Hyp Ref Expression
1 neips.1 X=J
2 simprr JTopNneiJSNMMXMX
3 neii2 JTopNneiJSgJSggN
4 sstr2 gNNMgM
5 4 com12 NMgNgM
6 5 anim2d NMSggNSggM
7 6 reximdv NMgJSggNgJSggM
8 3 7 mpan9 JTopNneiJSNMgJSggM
9 8 adantrr JTopNneiJSNMMXgJSggM
10 1 neiss2 JTopNneiJSSX
11 1 isnei JTopSXMneiJSMXgJSggM
12 10 11 syldan JTopNneiJSMneiJSMXgJSggM
13 12 adantr JTopNneiJSNMMXMneiJSMXgJSggM
14 2 9 13 mpbir2and JTopNneiJSNMMXMneiJS