Metamath Proof Explorer


Theorem innei

Description: The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property V_ii of BourbakiTop1 p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006)

Ref Expression
Assertion innei JTopNneiJSMneiJSNMneiJS

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 neii1 JTopNneiJSNJ
3 ssinss1 NJNMJ
4 2 3 syl JTopNneiJSNMJ
5 4 3adant3 JTopNneiJSMneiJSNMJ
6 neii2 JTopNneiJShJShhN
7 neii2 JTopMneiJSvJSvvM
8 6 7 anim12dan JTopNneiJSMneiJShJShhNvJSvvM
9 inopn JTophJvJhvJ
10 9 3expa JTophJvJhvJ
11 ssin ShSvShv
12 11 biimpi ShSvShv
13 ss2in hNvMhvNM
14 12 13 anim12i ShSvhNvMShvhvNM
15 14 an4s ShhNSvvMShvhvNM
16 sseq2 g=hvSgShv
17 sseq1 g=hvgNMhvNM
18 16 17 anbi12d g=hvSggNMShvhvNM
19 18 rspcev hvJShvhvNMgJSggNM
20 10 15 19 syl2an JTophJvJShhNSvvMgJSggNM
21 20 expr JTophJvJShhNSvvMgJSggNM
22 21 an32s JTophJShhNvJSvvMgJSggNM
23 22 rexlimdva JTophJShhNvJSvvMgJSggNM
24 23 rexlimdva2 JTophJShhNvJSvvMgJSggNM
25 24 imp32 JTophJShhNvJSvvMgJSggNM
26 8 25 syldan JTopNneiJSMneiJSgJSggNM
27 26 3impb JTopNneiJSMneiJSgJSggNM
28 1 neiss2 JTopNneiJSSJ
29 1 isnei JTopSJNMneiJSNMJgJSggNM
30 28 29 syldan JTopNneiJSNMneiJSNMJgJSggNM
31 30 3adant3 JTopNneiJSMneiJSNMneiJSNMJgJSggNM
32 5 27 31 mpbir2and JTopNneiJSMneiJSNMneiJS