Metamath Proof Explorer


Theorem isusp

Description: The predicate W is a uniform space. (Contributed by Thierry Arnoux, 4-Dec-2017)

Ref Expression
Hypotheses isusp.1 B = Base W
isusp.2 U = UnifSt W
isusp.3 J = TopOpen W
Assertion isusp W UnifSp U UnifOn B J = unifTop U

Proof

Step Hyp Ref Expression
1 isusp.1 B = Base W
2 isusp.2 U = UnifSt W
3 isusp.3 J = TopOpen W
4 elex W UnifSp W V
5 0nep0
6 fvprc ¬ W V Base W =
7 1 6 syl5eq ¬ W V B =
8 7 fveq2d ¬ W V UnifOn B = UnifOn
9 ust0 UnifOn =
10 8 9 eqtrdi ¬ W V UnifOn B =
11 10 eleq2d ¬ W V U UnifOn B U
12 2 fvexi U V
13 12 elsn U U =
14 11 13 bitrdi ¬ W V U UnifOn B U =
15 fvprc ¬ W V UnifSt W =
16 2 15 syl5eq ¬ W V U =
17 16 eqeq1d ¬ W V U = =
18 14 17 bitrd ¬ W V U UnifOn B =
19 18 necon3bbid ¬ W V ¬ U UnifOn B
20 5 19 mpbiri ¬ W V ¬ U UnifOn B
21 20 con4i U UnifOn B W V
22 21 adantr U UnifOn B J = unifTop U W V
23 fveq2 w = W UnifSt w = UnifSt W
24 23 2 eqtr4di w = W UnifSt w = U
25 fveq2 w = W Base w = Base W
26 25 1 eqtr4di w = W Base w = B
27 26 fveq2d w = W UnifOn Base w = UnifOn B
28 24 27 eleq12d w = W UnifSt w UnifOn Base w U UnifOn B
29 fveq2 w = W TopOpen w = TopOpen W
30 29 3 eqtr4di w = W TopOpen w = J
31 24 fveq2d w = W unifTop UnifSt w = unifTop U
32 30 31 eqeq12d w = W TopOpen w = unifTop UnifSt w J = unifTop U
33 28 32 anbi12d w = W UnifSt w UnifOn Base w TopOpen w = unifTop UnifSt w U UnifOn B J = unifTop U
34 df-usp UnifSp = w | UnifSt w UnifOn Base w TopOpen w = unifTop UnifSt w
35 33 34 elab2g W V W UnifSp U UnifOn B J = unifTop U
36 4 22 35 pm5.21nii W UnifSp U UnifOn B J = unifTop U