Metamath Proof Explorer


Theorem ust0

Description: The unique uniform structure of the empty set is the empty set. Remark 3 of BourbakiTop1 p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017)

Ref Expression
Assertion ust0 UnifOn=

Proof

Step Hyp Ref Expression
1 0ex V
2 isust VuUnifOnu𝒫××uvuw𝒫×vwwuwuvwuIvv-1uwuwwv
3 1 2 ax-mp uUnifOnu𝒫××uvuw𝒫×vwwuwuvwuIvv-1uwuwwv
4 3 simp1bi uUnifOnu𝒫×
5 0xp ×=
6 5 pweqi 𝒫×=𝒫
7 pw0 𝒫=
8 6 7 eqtri 𝒫×=
9 4 8 sseqtrdi uUnifOnu
10 ustbasel uUnifOn×u
11 5 10 eqeltrrid uUnifOnu
12 11 snssd uUnifOnu
13 9 12 eqssd uUnifOnu=
14 velsn uu=
15 13 14 sylibr uUnifOnu
16 15 ssriv UnifOn
17 8 eqimss2i 𝒫×
18 1 snid
19 5 18 eqeltri ×
20 18 a1i
21 8 raleqi w𝒫×wwwww
22 sseq2 w=w
23 eleq1 w=w
24 22 23 imbi12d w=ww
25 1 24 ralsn www
26 21 25 bitri w𝒫×ww
27 20 26 mpbir w𝒫×ww
28 inidm =
29 28 18 eqeltri
30 ineq2 w=w=
31 30 eleq1d w=w
32 1 31 ralsn ww
33 29 32 mpbir ww
34 res0 I=
35 34 eqimssi I
36 cnv0 -1=
37 36 18 eqeltri -1
38 0trrel
39 id w=w=
40 39 39 coeq12d w=ww=
41 40 sseq1d w=ww
42 1 41 rexsn www
43 38 42 mpbir www
44 35 37 43 3pm3.2i I-1www
45 sseq1 v=vww
46 45 imbi1d v=vwwww
47 46 ralbidv v=w𝒫×vwww𝒫×ww
48 ineq1 v=vw=w
49 48 eleq1d v=vww
50 49 ralbidv v=wvwww
51 sseq2 v=IvI
52 cnveq v=v-1=-1
53 52 eleq1d v=v-1-1
54 sseq2 v=wwvww
55 54 rexbidv v=wwwvwww
56 51 53 55 3anbi123d v=Ivv-1wwwvI-1www
57 47 50 56 3anbi123d v=w𝒫×vwwwvwIvv-1wwwvw𝒫×wwwwI-1www
58 1 57 ralsn vw𝒫×vwwwvwIvv-1wwwvw𝒫×wwwwI-1www
59 27 33 44 58 mpbir3an vw𝒫×vwwwvwIvv-1wwwv
60 isust VUnifOn𝒫××vw𝒫×vwwwvwIvv-1wwwv
61 1 60 ax-mp UnifOn𝒫××vw𝒫×vwwwvwIvv-1wwwv
62 17 19 59 61 mpbir3an UnifOn
63 snssi UnifOnUnifOn
64 62 63 ax-mp UnifOn
65 16 64 eqssi UnifOn=