Description: The unique uniform structure of the empty set is the empty set. Remark 3 of BourbakiTop1 p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | ust0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex | |
|
2 | isust | |
|
3 | 1 2 | ax-mp | |
4 | 3 | simp1bi | |
5 | 0xp | |
|
6 | 5 | pweqi | |
7 | pw0 | |
|
8 | 6 7 | eqtri | |
9 | 4 8 | sseqtrdi | |
10 | ustbasel | |
|
11 | 5 10 | eqeltrrid | |
12 | 11 | snssd | |
13 | 9 12 | eqssd | |
14 | velsn | |
|
15 | 13 14 | sylibr | |
16 | 15 | ssriv | |
17 | 8 | eqimss2i | |
18 | 1 | snid | |
19 | 5 18 | eqeltri | |
20 | 18 | a1i | |
21 | 8 | raleqi | |
22 | sseq2 | |
|
23 | eleq1 | |
|
24 | 22 23 | imbi12d | |
25 | 1 24 | ralsn | |
26 | 21 25 | bitri | |
27 | 20 26 | mpbir | |
28 | inidm | |
|
29 | 28 18 | eqeltri | |
30 | ineq2 | |
|
31 | 30 | eleq1d | |
32 | 1 31 | ralsn | |
33 | 29 32 | mpbir | |
34 | res0 | |
|
35 | 34 | eqimssi | |
36 | cnv0 | |
|
37 | 36 18 | eqeltri | |
38 | 0trrel | |
|
39 | id | |
|
40 | 39 39 | coeq12d | |
41 | 40 | sseq1d | |
42 | 1 41 | rexsn | |
43 | 38 42 | mpbir | |
44 | 35 37 43 | 3pm3.2i | |
45 | sseq1 | |
|
46 | 45 | imbi1d | |
47 | 46 | ralbidv | |
48 | ineq1 | |
|
49 | 48 | eleq1d | |
50 | 49 | ralbidv | |
51 | sseq2 | |
|
52 | cnveq | |
|
53 | 52 | eleq1d | |
54 | sseq2 | |
|
55 | 54 | rexbidv | |
56 | 51 53 55 | 3anbi123d | |
57 | 47 50 56 | 3anbi123d | |
58 | 1 57 | ralsn | |
59 | 27 33 44 58 | mpbir3an | |
60 | isust | |
|
61 | 1 60 | ax-mp | |
62 | 17 19 59 61 | mpbir3an | |
63 | snssi | |
|
64 | 62 63 | ax-mp | |
65 | 16 64 | eqssi | |