Metamath Proof Explorer


Theorem isust

Description: The predicate " U is a uniform structure with base X ". (Contributed by Thierry Arnoux, 15-Nov-2017) (Revised by AV, 17-Sep-2021)

Ref Expression
Assertion isust X V U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v

Proof

Step Hyp Ref Expression
1 ustval X V UnifOn X = u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v
2 1 eleq2d X V U UnifOn X U u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v
3 simp1 U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v U 𝒫 X × X
4 sqxpexg X V X × X V
5 4 pwexd X V 𝒫 X × X V
6 5 adantr X V U 𝒫 X × X 𝒫 X × X V
7 simpr X V U 𝒫 X × X U 𝒫 X × X
8 6 7 ssexd X V U 𝒫 X × X U V
9 8 ex X V U 𝒫 X × X U V
10 3 9 syl5 X V U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v U V
11 sseq1 u = U u 𝒫 X × X U 𝒫 X × X
12 eleq2 u = U X × X u X × X U
13 eleq2 u = U w u w U
14 13 imbi2d u = U v w w u v w w U
15 14 ralbidv u = U w 𝒫 X × X v w w u w 𝒫 X × X v w w U
16 eleq2 u = U v w u v w U
17 16 raleqbi1dv u = U w u v w u w U v w U
18 eleq2 u = U v -1 u v -1 U
19 rexeq u = U w u w w v w U w w v
20 18 19 3anbi23d u = U I X v v -1 u w u w w v I X v v -1 U w U w w v
21 15 17 20 3anbi123d u = U w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
22 21 raleqbi1dv u = U v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
23 11 12 22 3anbi123d u = U u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
24 23 elab3g U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v U V U u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
25 10 24 syl X V U u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
26 2 25 bitrd X V U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v