Metamath Proof Explorer


Theorem ressust

Description: The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018)

Ref Expression
Hypotheses ressust.x X = Base W
ressust.t T = UnifSt W 𝑠 A
Assertion ressust W UnifSp A X T UnifOn A

Proof

Step Hyp Ref Expression
1 ressust.x X = Base W
2 ressust.t T = UnifSt W 𝑠 A
3 1 fvexi X V
4 3 ssex A X A V
5 4 adantl W UnifSp A X A V
6 ressuss A V UnifSt W 𝑠 A = UnifSt W 𝑡 A × A
7 5 6 syl W UnifSp A X UnifSt W 𝑠 A = UnifSt W 𝑡 A × A
8 2 7 syl5eq W UnifSp A X T = UnifSt W 𝑡 A × A
9 eqid UnifSt W = UnifSt W
10 eqid TopOpen W = TopOpen W
11 1 9 10 isusp W UnifSp UnifSt W UnifOn X TopOpen W = unifTop UnifSt W
12 11 simplbi W UnifSp UnifSt W UnifOn X
13 trust UnifSt W UnifOn X A X UnifSt W 𝑡 A × A UnifOn A
14 12 13 sylan W UnifSp A X UnifSt W 𝑡 A × A UnifOn A
15 8 14 eqeltrd W UnifSp A X T UnifOn A