Step |
Hyp |
Ref |
Expression |
1 |
|
ressust.x |
|- X = ( Base ` W ) |
2 |
|
ressust.t |
|- T = ( UnifSt ` ( W |`s A ) ) |
3 |
1
|
fvexi |
|- X e. _V |
4 |
3
|
ssex |
|- ( A C_ X -> A e. _V ) |
5 |
4
|
adantl |
|- ( ( W e. UnifSp /\ A C_ X ) -> A e. _V ) |
6 |
|
ressuss |
|- ( A e. _V -> ( UnifSt ` ( W |`s A ) ) = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |
7 |
5 6
|
syl |
|- ( ( W e. UnifSp /\ A C_ X ) -> ( UnifSt ` ( W |`s A ) ) = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |
8 |
2 7
|
eqtrid |
|- ( ( W e. UnifSp /\ A C_ X ) -> T = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |
9 |
|
eqid |
|- ( UnifSt ` W ) = ( UnifSt ` W ) |
10 |
|
eqid |
|- ( TopOpen ` W ) = ( TopOpen ` W ) |
11 |
1 9 10
|
isusp |
|- ( W e. UnifSp <-> ( ( UnifSt ` W ) e. ( UnifOn ` X ) /\ ( TopOpen ` W ) = ( unifTop ` ( UnifSt ` W ) ) ) ) |
12 |
11
|
simplbi |
|- ( W e. UnifSp -> ( UnifSt ` W ) e. ( UnifOn ` X ) ) |
13 |
|
trust |
|- ( ( ( UnifSt ` W ) e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( UnifSt ` W ) |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
14 |
12 13
|
sylan |
|- ( ( W e. UnifSp /\ A C_ X ) -> ( ( UnifSt ` W ) |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
15 |
8 14
|
eqeltrd |
|- ( ( W e. UnifSp /\ A C_ X ) -> T e. ( UnifOn ` A ) ) |