Step |
Hyp |
Ref |
Expression |
1 |
|
ressusp.1 |
|- B = ( Base ` W ) |
2 |
|
ressusp.2 |
|- J = ( TopOpen ` W ) |
3 |
|
ressuss |
|- ( A e. J -> ( UnifSt ` ( W |`s A ) ) = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |
4 |
3
|
3ad2ant3 |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( UnifSt ` ( W |`s A ) ) = ( ( UnifSt ` W ) |`t ( A X. A ) ) ) |
5 |
|
simp1 |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> W e. UnifSp ) |
6 |
|
eqid |
|- ( UnifSt ` W ) = ( UnifSt ` W ) |
7 |
1 6 2
|
isusp |
|- ( W e. UnifSp <-> ( ( UnifSt ` W ) e. ( UnifOn ` B ) /\ J = ( unifTop ` ( UnifSt ` W ) ) ) ) |
8 |
5 7
|
sylib |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( ( UnifSt ` W ) e. ( UnifOn ` B ) /\ J = ( unifTop ` ( UnifSt ` W ) ) ) ) |
9 |
8
|
simpld |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( UnifSt ` W ) e. ( UnifOn ` B ) ) |
10 |
|
simp2 |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> W e. TopSp ) |
11 |
1 2
|
istps |
|- ( W e. TopSp <-> J e. ( TopOn ` B ) ) |
12 |
10 11
|
sylib |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> J e. ( TopOn ` B ) ) |
13 |
|
simp3 |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> A e. J ) |
14 |
|
toponss |
|- ( ( J e. ( TopOn ` B ) /\ A e. J ) -> A C_ B ) |
15 |
12 13 14
|
syl2anc |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> A C_ B ) |
16 |
|
trust |
|- ( ( ( UnifSt ` W ) e. ( UnifOn ` B ) /\ A C_ B ) -> ( ( UnifSt ` W ) |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
17 |
9 15 16
|
syl2anc |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( ( UnifSt ` W ) |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
18 |
4 17
|
eqeltrd |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( UnifSt ` ( W |`s A ) ) e. ( UnifOn ` A ) ) |
19 |
|
eqid |
|- ( W |`s A ) = ( W |`s A ) |
20 |
19 1
|
ressbas2 |
|- ( A C_ B -> A = ( Base ` ( W |`s A ) ) ) |
21 |
15 20
|
syl |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> A = ( Base ` ( W |`s A ) ) ) |
22 |
21
|
fveq2d |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( UnifOn ` A ) = ( UnifOn ` ( Base ` ( W |`s A ) ) ) ) |
23 |
18 22
|
eleqtrd |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( UnifSt ` ( W |`s A ) ) e. ( UnifOn ` ( Base ` ( W |`s A ) ) ) ) |
24 |
8
|
simprd |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> J = ( unifTop ` ( UnifSt ` W ) ) ) |
25 |
13 24
|
eleqtrd |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> A e. ( unifTop ` ( UnifSt ` W ) ) ) |
26 |
|
restutopopn |
|- ( ( ( UnifSt ` W ) e. ( UnifOn ` B ) /\ A e. ( unifTop ` ( UnifSt ` W ) ) ) -> ( ( unifTop ` ( UnifSt ` W ) ) |`t A ) = ( unifTop ` ( ( UnifSt ` W ) |`t ( A X. A ) ) ) ) |
27 |
9 25 26
|
syl2anc |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( ( unifTop ` ( UnifSt ` W ) ) |`t A ) = ( unifTop ` ( ( UnifSt ` W ) |`t ( A X. A ) ) ) ) |
28 |
24
|
oveq1d |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( J |`t A ) = ( ( unifTop ` ( UnifSt ` W ) ) |`t A ) ) |
29 |
4
|
fveq2d |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( unifTop ` ( UnifSt ` ( W |`s A ) ) ) = ( unifTop ` ( ( UnifSt ` W ) |`t ( A X. A ) ) ) ) |
30 |
27 28 29
|
3eqtr4d |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( J |`t A ) = ( unifTop ` ( UnifSt ` ( W |`s A ) ) ) ) |
31 |
|
eqid |
|- ( Base ` ( W |`s A ) ) = ( Base ` ( W |`s A ) ) |
32 |
|
eqid |
|- ( UnifSt ` ( W |`s A ) ) = ( UnifSt ` ( W |`s A ) ) |
33 |
19 2
|
resstopn |
|- ( J |`t A ) = ( TopOpen ` ( W |`s A ) ) |
34 |
31 32 33
|
isusp |
|- ( ( W |`s A ) e. UnifSp <-> ( ( UnifSt ` ( W |`s A ) ) e. ( UnifOn ` ( Base ` ( W |`s A ) ) ) /\ ( J |`t A ) = ( unifTop ` ( UnifSt ` ( W |`s A ) ) ) ) ) |
35 |
23 30 34
|
sylanbrc |
|- ( ( W e. UnifSp /\ W e. TopSp /\ A e. J ) -> ( W |`s A ) e. UnifSp ) |