Step |
Hyp |
Ref |
Expression |
1 |
|
elutop |
|- ( U e. ( UnifOn ` X ) -> ( A e. ( unifTop ` U ) <-> ( A C_ X /\ A. x e. A E. t e. U ( t " { x } ) C_ A ) ) ) |
2 |
1
|
simprbda |
|- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> A C_ X ) |
3 |
|
restutop |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( unifTop ` U ) |`t A ) C_ ( unifTop ` ( U |`t ( A X. A ) ) ) ) |
4 |
2 3
|
syldan |
|- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> ( ( unifTop ` U ) |`t A ) C_ ( unifTop ` ( U |`t ( A X. A ) ) ) ) |
5 |
|
trust |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
6 |
2 5
|
syldan |
|- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
7 |
|
elutop |
|- ( ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) -> ( b e. ( unifTop ` ( U |`t ( A X. A ) ) ) <-> ( b C_ A /\ A. x e. b E. u e. ( U |`t ( A X. A ) ) ( u " { x } ) C_ b ) ) ) |
8 |
6 7
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> ( b e. ( unifTop ` ( U |`t ( A X. A ) ) ) <-> ( b C_ A /\ A. x e. b E. u e. ( U |`t ( A X. A ) ) ( u " { x } ) C_ b ) ) ) |
9 |
8
|
simprbda |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> b C_ A ) |
10 |
2
|
adantr |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> A C_ X ) |
11 |
9 10
|
sstrd |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> b C_ X ) |
12 |
|
simp-9l |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> U e. ( UnifOn ` X ) ) |
13 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> t e. U ) |
14 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> w e. U ) |
15 |
|
ustincl |
|- ( ( U e. ( UnifOn ` X ) /\ t e. U /\ w e. U ) -> ( t i^i w ) e. U ) |
16 |
12 13 14 15
|
syl3anc |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( t i^i w ) e. U ) |
17 |
|
inimass |
|- ( ( t i^i w ) " { x } ) C_ ( ( t " { x } ) i^i ( w " { x } ) ) |
18 |
|
ssrin |
|- ( ( t " { x } ) C_ A -> ( ( t " { x } ) i^i ( w " { x } ) ) C_ ( A i^i ( w " { x } ) ) ) |
19 |
18
|
adantl |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( ( t " { x } ) i^i ( w " { x } ) ) C_ ( A i^i ( w " { x } ) ) ) |
20 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> u = ( w i^i ( A X. A ) ) ) |
21 |
20
|
imaeq1d |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( u " { x } ) = ( ( w i^i ( A X. A ) ) " { x } ) ) |
22 |
9
|
ad5antr |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> b C_ A ) |
23 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> x e. b ) |
24 |
22 23
|
sseldd |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> x e. A ) |
25 |
24
|
ad2antrr |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> x e. A ) |
26 |
|
inimasn |
|- ( x e. _V -> ( ( w i^i ( A X. A ) ) " { x } ) = ( ( w " { x } ) i^i ( ( A X. A ) " { x } ) ) ) |
27 |
26
|
elv |
|- ( ( w i^i ( A X. A ) ) " { x } ) = ( ( w " { x } ) i^i ( ( A X. A ) " { x } ) ) |
28 |
|
xpimasn |
|- ( x e. A -> ( ( A X. A ) " { x } ) = A ) |
29 |
28
|
ineq2d |
|- ( x e. A -> ( ( w " { x } ) i^i ( ( A X. A ) " { x } ) ) = ( ( w " { x } ) i^i A ) ) |
30 |
27 29
|
eqtrid |
|- ( x e. A -> ( ( w i^i ( A X. A ) ) " { x } ) = ( ( w " { x } ) i^i A ) ) |
31 |
|
incom |
|- ( ( w " { x } ) i^i A ) = ( A i^i ( w " { x } ) ) |
32 |
30 31
|
eqtrdi |
|- ( x e. A -> ( ( w i^i ( A X. A ) ) " { x } ) = ( A i^i ( w " { x } ) ) ) |
33 |
25 32
|
syl |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( ( w i^i ( A X. A ) ) " { x } ) = ( A i^i ( w " { x } ) ) ) |
34 |
21 33
|
eqtrd |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( u " { x } ) = ( A i^i ( w " { x } ) ) ) |
35 |
19 34
|
sseqtrrd |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( ( t " { x } ) i^i ( w " { x } ) ) C_ ( u " { x } ) ) |
36 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( u " { x } ) C_ b ) |
37 |
35 36
|
sstrd |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( ( t " { x } ) i^i ( w " { x } ) ) C_ b ) |
38 |
17 37
|
sstrid |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> ( ( t i^i w ) " { x } ) C_ b ) |
39 |
|
imaeq1 |
|- ( v = ( t i^i w ) -> ( v " { x } ) = ( ( t i^i w ) " { x } ) ) |
40 |
39
|
sseq1d |
|- ( v = ( t i^i w ) -> ( ( v " { x } ) C_ b <-> ( ( t i^i w ) " { x } ) C_ b ) ) |
41 |
40
|
rspcev |
|- ( ( ( t i^i w ) e. U /\ ( ( t i^i w ) " { x } ) C_ b ) -> E. v e. U ( v " { x } ) C_ b ) |
42 |
16 38 41
|
syl2anc |
|- ( ( ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) /\ t e. U ) /\ ( t " { x } ) C_ A ) -> E. v e. U ( v " { x } ) C_ b ) |
43 |
|
simp-4l |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) -> ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) ) |
44 |
43
|
ad2antrr |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) ) |
45 |
1
|
simplbda |
|- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> A. x e. A E. t e. U ( t " { x } ) C_ A ) |
46 |
45
|
r19.21bi |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ x e. A ) -> E. t e. U ( t " { x } ) C_ A ) |
47 |
44 24 46
|
syl2anc |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> E. t e. U ( t " { x } ) C_ A ) |
48 |
42 47
|
r19.29a |
|- ( ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) /\ w e. U ) /\ u = ( w i^i ( A X. A ) ) ) -> E. v e. U ( v " { x } ) C_ b ) |
49 |
|
simplr |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) -> u e. ( U |`t ( A X. A ) ) ) |
50 |
|
sqxpexg |
|- ( A e. ( unifTop ` U ) -> ( A X. A ) e. _V ) |
51 |
|
elrest |
|- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) -> ( u e. ( U |`t ( A X. A ) ) <-> E. w e. U u = ( w i^i ( A X. A ) ) ) ) |
52 |
50 51
|
sylan2 |
|- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> ( u e. ( U |`t ( A X. A ) ) <-> E. w e. U u = ( w i^i ( A X. A ) ) ) ) |
53 |
52
|
biimpa |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ u e. ( U |`t ( A X. A ) ) ) -> E. w e. U u = ( w i^i ( A X. A ) ) ) |
54 |
43 49 53
|
syl2anc |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) -> E. w e. U u = ( w i^i ( A X. A ) ) ) |
55 |
48 54
|
r19.29a |
|- ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) /\ u e. ( U |`t ( A X. A ) ) ) /\ ( u " { x } ) C_ b ) -> E. v e. U ( v " { x } ) C_ b ) |
56 |
8
|
simplbda |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> A. x e. b E. u e. ( U |`t ( A X. A ) ) ( u " { x } ) C_ b ) |
57 |
56
|
r19.21bi |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) -> E. u e. ( U |`t ( A X. A ) ) ( u " { x } ) C_ b ) |
58 |
55 57
|
r19.29a |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) /\ x e. b ) -> E. v e. U ( v " { x } ) C_ b ) |
59 |
58
|
ralrimiva |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> A. x e. b E. v e. U ( v " { x } ) C_ b ) |
60 |
|
elutop |
|- ( U e. ( UnifOn ` X ) -> ( b e. ( unifTop ` U ) <-> ( b C_ X /\ A. x e. b E. v e. U ( v " { x } ) C_ b ) ) ) |
61 |
60
|
ad2antrr |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> ( b e. ( unifTop ` U ) <-> ( b C_ X /\ A. x e. b E. v e. U ( v " { x } ) C_ b ) ) ) |
62 |
11 59 61
|
mpbir2and |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> b e. ( unifTop ` U ) ) |
63 |
|
df-ss |
|- ( b C_ A <-> ( b i^i A ) = b ) |
64 |
9 63
|
sylib |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> ( b i^i A ) = b ) |
65 |
64
|
eqcomd |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> b = ( b i^i A ) ) |
66 |
|
ineq1 |
|- ( a = b -> ( a i^i A ) = ( b i^i A ) ) |
67 |
66
|
rspceeqv |
|- ( ( b e. ( unifTop ` U ) /\ b = ( b i^i A ) ) -> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) |
68 |
62 65 67
|
syl2anc |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) |
69 |
|
fvex |
|- ( unifTop ` U ) e. _V |
70 |
|
elrest |
|- ( ( ( unifTop ` U ) e. _V /\ A e. ( unifTop ` U ) ) -> ( b e. ( ( unifTop ` U ) |`t A ) <-> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) ) |
71 |
69 70
|
mpan |
|- ( A e. ( unifTop ` U ) -> ( b e. ( ( unifTop ` U ) |`t A ) <-> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) ) |
72 |
71
|
ad2antlr |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> ( b e. ( ( unifTop ` U ) |`t A ) <-> E. a e. ( unifTop ` U ) b = ( a i^i A ) ) ) |
73 |
68 72
|
mpbird |
|- ( ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) /\ b e. ( unifTop ` ( U |`t ( A X. A ) ) ) ) -> b e. ( ( unifTop ` U ) |`t A ) ) |
74 |
4 73
|
eqelssd |
|- ( ( U e. ( UnifOn ` X ) /\ A e. ( unifTop ` U ) ) -> ( ( unifTop ` U ) |`t A ) = ( unifTop ` ( U |`t ( A X. A ) ) ) ) |