| Step |
Hyp |
Ref |
Expression |
| 1 |
|
restsspw |
|- ( U |`t ( A X. A ) ) C_ ~P ( A X. A ) |
| 2 |
1
|
a1i |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( U |`t ( A X. A ) ) C_ ~P ( A X. A ) ) |
| 3 |
|
inxp |
|- ( ( X X. X ) i^i ( A X. A ) ) = ( ( X i^i A ) X. ( X i^i A ) ) |
| 4 |
|
sseqin2 |
|- ( A C_ X <-> ( X i^i A ) = A ) |
| 5 |
4
|
biimpi |
|- ( A C_ X -> ( X i^i A ) = A ) |
| 6 |
5
|
sqxpeqd |
|- ( A C_ X -> ( ( X i^i A ) X. ( X i^i A ) ) = ( A X. A ) ) |
| 7 |
3 6
|
eqtrid |
|- ( A C_ X -> ( ( X X. X ) i^i ( A X. A ) ) = ( A X. A ) ) |
| 8 |
7
|
adantl |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( X X. X ) i^i ( A X. A ) ) = ( A X. A ) ) |
| 9 |
|
simpl |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> U e. ( UnifOn ` X ) ) |
| 10 |
|
elfvex |
|- ( U e. ( UnifOn ` X ) -> X e. _V ) |
| 11 |
10
|
adantr |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> X e. _V ) |
| 12 |
|
simpr |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A C_ X ) |
| 13 |
11 12
|
ssexd |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A e. _V ) |
| 14 |
13 13
|
xpexd |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( A X. A ) e. _V ) |
| 15 |
|
ustbasel |
|- ( U e. ( UnifOn ` X ) -> ( X X. X ) e. U ) |
| 16 |
15
|
adantr |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( X X. X ) e. U ) |
| 17 |
|
elrestr |
|- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V /\ ( X X. X ) e. U ) -> ( ( X X. X ) i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
| 18 |
9 14 16 17
|
syl3anc |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( X X. X ) i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
| 19 |
8 18
|
eqeltrrd |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( A X. A ) e. ( U |`t ( A X. A ) ) ) |
| 20 |
9
|
ad5antr |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> U e. ( UnifOn ` X ) ) |
| 21 |
14
|
ad5antr |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( A X. A ) e. _V ) |
| 22 |
|
simplr |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> u e. U ) |
| 23 |
|
simp-4r |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w e. ~P ( A X. A ) ) |
| 24 |
23
|
elpwid |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w C_ ( A X. A ) ) |
| 25 |
12
|
ad5antr |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> A C_ X ) |
| 26 |
|
xpss12 |
|- ( ( A C_ X /\ A C_ X ) -> ( A X. A ) C_ ( X X. X ) ) |
| 27 |
25 25 26
|
syl2anc |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( A X. A ) C_ ( X X. X ) ) |
| 28 |
24 27
|
sstrd |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w C_ ( X X. X ) ) |
| 29 |
|
ustssxp |
|- ( ( U e. ( UnifOn ` X ) /\ u e. U ) -> u C_ ( X X. X ) ) |
| 30 |
20 22 29
|
syl2anc |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> u C_ ( X X. X ) ) |
| 31 |
28 30
|
unssd |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( w u. u ) C_ ( X X. X ) ) |
| 32 |
|
ssun2 |
|- u C_ ( w u. u ) |
| 33 |
|
ustssel |
|- ( ( U e. ( UnifOn ` X ) /\ u e. U /\ ( w u. u ) C_ ( X X. X ) ) -> ( u C_ ( w u. u ) -> ( w u. u ) e. U ) ) |
| 34 |
32 33
|
mpi |
|- ( ( U e. ( UnifOn ` X ) /\ u e. U /\ ( w u. u ) C_ ( X X. X ) ) -> ( w u. u ) e. U ) |
| 35 |
20 22 31 34
|
syl3anc |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( w u. u ) e. U ) |
| 36 |
|
dfss2 |
|- ( w C_ ( A X. A ) <-> ( w i^i ( A X. A ) ) = w ) |
| 37 |
24 36
|
sylib |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( w i^i ( A X. A ) ) = w ) |
| 38 |
37
|
uneq1d |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( ( w i^i ( A X. A ) ) u. ( u i^i ( A X. A ) ) ) = ( w u. ( u i^i ( A X. A ) ) ) ) |
| 39 |
|
simpr |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> v = ( u i^i ( A X. A ) ) ) |
| 40 |
|
simpllr |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> v C_ w ) |
| 41 |
39 40
|
eqsstrrd |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( u i^i ( A X. A ) ) C_ w ) |
| 42 |
|
ssequn2 |
|- ( ( u i^i ( A X. A ) ) C_ w <-> ( w u. ( u i^i ( A X. A ) ) ) = w ) |
| 43 |
41 42
|
sylib |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( w u. ( u i^i ( A X. A ) ) ) = w ) |
| 44 |
38 43
|
eqtr2d |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w = ( ( w i^i ( A X. A ) ) u. ( u i^i ( A X. A ) ) ) ) |
| 45 |
|
indir |
|- ( ( w u. u ) i^i ( A X. A ) ) = ( ( w i^i ( A X. A ) ) u. ( u i^i ( A X. A ) ) ) |
| 46 |
44 45
|
eqtr4di |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w = ( ( w u. u ) i^i ( A X. A ) ) ) |
| 47 |
|
ineq1 |
|- ( x = ( w u. u ) -> ( x i^i ( A X. A ) ) = ( ( w u. u ) i^i ( A X. A ) ) ) |
| 48 |
47
|
rspceeqv |
|- ( ( ( w u. u ) e. U /\ w = ( ( w u. u ) i^i ( A X. A ) ) ) -> E. x e. U w = ( x i^i ( A X. A ) ) ) |
| 49 |
35 46 48
|
syl2anc |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> E. x e. U w = ( x i^i ( A X. A ) ) ) |
| 50 |
|
elrest |
|- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) -> ( w e. ( U |`t ( A X. A ) ) <-> E. x e. U w = ( x i^i ( A X. A ) ) ) ) |
| 51 |
50
|
biimpar |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) /\ E. x e. U w = ( x i^i ( A X. A ) ) ) -> w e. ( U |`t ( A X. A ) ) ) |
| 52 |
20 21 49 51
|
syl21anc |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w e. ( U |`t ( A X. A ) ) ) |
| 53 |
|
elrest |
|- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) -> ( v e. ( U |`t ( A X. A ) ) <-> E. u e. U v = ( u i^i ( A X. A ) ) ) ) |
| 54 |
53
|
biimpa |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) /\ v e. ( U |`t ( A X. A ) ) ) -> E. u e. U v = ( u i^i ( A X. A ) ) ) |
| 55 |
14 54
|
syldanl |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> E. u e. U v = ( u i^i ( A X. A ) ) ) |
| 56 |
55
|
ad2antrr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) -> E. u e. U v = ( u i^i ( A X. A ) ) ) |
| 57 |
52 56
|
r19.29a |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) -> w e. ( U |`t ( A X. A ) ) ) |
| 58 |
57
|
ex |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) -> ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) ) |
| 59 |
58
|
ralrimiva |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) ) |
| 60 |
9
|
ad5antr |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> U e. ( UnifOn ` X ) ) |
| 61 |
14
|
ad5antr |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> ( A X. A ) e. _V ) |
| 62 |
|
simpllr |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> u e. U ) |
| 63 |
|
simplr |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> x e. U ) |
| 64 |
|
ustincl |
|- ( ( U e. ( UnifOn ` X ) /\ u e. U /\ x e. U ) -> ( u i^i x ) e. U ) |
| 65 |
60 62 63 64
|
syl3anc |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> ( u i^i x ) e. U ) |
| 66 |
|
simprl |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> v = ( u i^i ( A X. A ) ) ) |
| 67 |
|
simprr |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> w = ( x i^i ( A X. A ) ) ) |
| 68 |
66 67
|
ineq12d |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> ( v i^i w ) = ( ( u i^i ( A X. A ) ) i^i ( x i^i ( A X. A ) ) ) ) |
| 69 |
|
inindir |
|- ( ( u i^i x ) i^i ( A X. A ) ) = ( ( u i^i ( A X. A ) ) i^i ( x i^i ( A X. A ) ) ) |
| 70 |
68 69
|
eqtr4di |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> ( v i^i w ) = ( ( u i^i x ) i^i ( A X. A ) ) ) |
| 71 |
|
ineq1 |
|- ( y = ( u i^i x ) -> ( y i^i ( A X. A ) ) = ( ( u i^i x ) i^i ( A X. A ) ) ) |
| 72 |
71
|
rspceeqv |
|- ( ( ( u i^i x ) e. U /\ ( v i^i w ) = ( ( u i^i x ) i^i ( A X. A ) ) ) -> E. y e. U ( v i^i w ) = ( y i^i ( A X. A ) ) ) |
| 73 |
65 70 72
|
syl2anc |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> E. y e. U ( v i^i w ) = ( y i^i ( A X. A ) ) ) |
| 74 |
|
elrest |
|- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) -> ( ( v i^i w ) e. ( U |`t ( A X. A ) ) <-> E. y e. U ( v i^i w ) = ( y i^i ( A X. A ) ) ) ) |
| 75 |
74
|
biimpar |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) /\ E. y e. U ( v i^i w ) = ( y i^i ( A X. A ) ) ) -> ( v i^i w ) e. ( U |`t ( A X. A ) ) ) |
| 76 |
60 61 73 75
|
syl21anc |
|- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> ( v i^i w ) e. ( U |`t ( A X. A ) ) ) |
| 77 |
55
|
adantr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> E. u e. U v = ( u i^i ( A X. A ) ) ) |
| 78 |
9
|
ad2antrr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> U e. ( UnifOn ` X ) ) |
| 79 |
14
|
ad2antrr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> ( A X. A ) e. _V ) |
| 80 |
|
simpr |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> w e. ( U |`t ( A X. A ) ) ) |
| 81 |
50
|
biimpa |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) /\ w e. ( U |`t ( A X. A ) ) ) -> E. x e. U w = ( x i^i ( A X. A ) ) ) |
| 82 |
78 79 80 81
|
syl21anc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> E. x e. U w = ( x i^i ( A X. A ) ) ) |
| 83 |
|
reeanv |
|- ( E. u e. U E. x e. U ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) <-> ( E. u e. U v = ( u i^i ( A X. A ) ) /\ E. x e. U w = ( x i^i ( A X. A ) ) ) ) |
| 84 |
77 82 83
|
sylanbrc |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> E. u e. U E. x e. U ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) |
| 85 |
76 84
|
r19.29vva |
|- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> ( v i^i w ) e. ( U |`t ( A X. A ) ) ) |
| 86 |
85
|
ralrimiva |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) ) |
| 87 |
|
simp-4l |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> U e. ( UnifOn ` X ) ) |
| 88 |
|
simplr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> u e. U ) |
| 89 |
|
ustdiag |
|- ( ( U e. ( UnifOn ` X ) /\ u e. U ) -> ( _I |` X ) C_ u ) |
| 90 |
87 88 89
|
syl2anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( _I |` X ) C_ u ) |
| 91 |
|
simp-4r |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> A C_ X ) |
| 92 |
|
inss1 |
|- ( ( _I |` X ) i^i ( A X. A ) ) C_ ( _I |` X ) |
| 93 |
|
resss |
|- ( _I |` X ) C_ _I |
| 94 |
92 93
|
sstri |
|- ( ( _I |` X ) i^i ( A X. A ) ) C_ _I |
| 95 |
|
iss |
|- ( ( ( _I |` X ) i^i ( A X. A ) ) C_ _I <-> ( ( _I |` X ) i^i ( A X. A ) ) = ( _I |` dom ( ( _I |` X ) i^i ( A X. A ) ) ) ) |
| 96 |
94 95
|
mpbi |
|- ( ( _I |` X ) i^i ( A X. A ) ) = ( _I |` dom ( ( _I |` X ) i^i ( A X. A ) ) ) |
| 97 |
|
simpr |
|- ( ( A C_ X /\ u e. A ) -> u e. A ) |
| 98 |
|
ssel2 |
|- ( ( A C_ X /\ u e. A ) -> u e. X ) |
| 99 |
|
equid |
|- u = u |
| 100 |
|
resieq |
|- ( ( u e. X /\ u e. X ) -> ( u ( _I |` X ) u <-> u = u ) ) |
| 101 |
99 100
|
mpbiri |
|- ( ( u e. X /\ u e. X ) -> u ( _I |` X ) u ) |
| 102 |
98 98 101
|
syl2anc |
|- ( ( A C_ X /\ u e. A ) -> u ( _I |` X ) u ) |
| 103 |
|
breq2 |
|- ( v = u -> ( u ( _I |` X ) v <-> u ( _I |` X ) u ) ) |
| 104 |
103
|
rspcev |
|- ( ( u e. A /\ u ( _I |` X ) u ) -> E. v e. A u ( _I |` X ) v ) |
| 105 |
97 102 104
|
syl2anc |
|- ( ( A C_ X /\ u e. A ) -> E. v e. A u ( _I |` X ) v ) |
| 106 |
105
|
ralrimiva |
|- ( A C_ X -> A. u e. A E. v e. A u ( _I |` X ) v ) |
| 107 |
|
dminxp |
|- ( dom ( ( _I |` X ) i^i ( A X. A ) ) = A <-> A. u e. A E. v e. A u ( _I |` X ) v ) |
| 108 |
106 107
|
sylibr |
|- ( A C_ X -> dom ( ( _I |` X ) i^i ( A X. A ) ) = A ) |
| 109 |
108
|
reseq2d |
|- ( A C_ X -> ( _I |` dom ( ( _I |` X ) i^i ( A X. A ) ) ) = ( _I |` A ) ) |
| 110 |
96 109
|
eqtr2id |
|- ( A C_ X -> ( _I |` A ) = ( ( _I |` X ) i^i ( A X. A ) ) ) |
| 111 |
110
|
adantl |
|- ( ( ( _I |` X ) C_ u /\ A C_ X ) -> ( _I |` A ) = ( ( _I |` X ) i^i ( A X. A ) ) ) |
| 112 |
|
ssrin |
|- ( ( _I |` X ) C_ u -> ( ( _I |` X ) i^i ( A X. A ) ) C_ ( u i^i ( A X. A ) ) ) |
| 113 |
112
|
adantr |
|- ( ( ( _I |` X ) C_ u /\ A C_ X ) -> ( ( _I |` X ) i^i ( A X. A ) ) C_ ( u i^i ( A X. A ) ) ) |
| 114 |
111 113
|
eqsstrd |
|- ( ( ( _I |` X ) C_ u /\ A C_ X ) -> ( _I |` A ) C_ ( u i^i ( A X. A ) ) ) |
| 115 |
90 91 114
|
syl2anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( _I |` A ) C_ ( u i^i ( A X. A ) ) ) |
| 116 |
|
simpr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> v = ( u i^i ( A X. A ) ) ) |
| 117 |
115 116
|
sseqtrrd |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( _I |` A ) C_ v ) |
| 118 |
117 55
|
r19.29a |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> ( _I |` A ) C_ v ) |
| 119 |
14
|
ad3antrrr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( A X. A ) e. _V ) |
| 120 |
|
ustinvel |
|- ( ( U e. ( UnifOn ` X ) /\ u e. U ) -> `' u e. U ) |
| 121 |
87 88 120
|
syl2anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> `' u e. U ) |
| 122 |
116
|
cnveqd |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> `' v = `' ( u i^i ( A X. A ) ) ) |
| 123 |
|
cnvin |
|- `' ( u i^i ( A X. A ) ) = ( `' u i^i `' ( A X. A ) ) |
| 124 |
|
cnvxp |
|- `' ( A X. A ) = ( A X. A ) |
| 125 |
124
|
ineq2i |
|- ( `' u i^i `' ( A X. A ) ) = ( `' u i^i ( A X. A ) ) |
| 126 |
123 125
|
eqtri |
|- `' ( u i^i ( A X. A ) ) = ( `' u i^i ( A X. A ) ) |
| 127 |
122 126
|
eqtrdi |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> `' v = ( `' u i^i ( A X. A ) ) ) |
| 128 |
|
ineq1 |
|- ( x = `' u -> ( x i^i ( A X. A ) ) = ( `' u i^i ( A X. A ) ) ) |
| 129 |
128
|
rspceeqv |
|- ( ( `' u e. U /\ `' v = ( `' u i^i ( A X. A ) ) ) -> E. x e. U `' v = ( x i^i ( A X. A ) ) ) |
| 130 |
121 127 129
|
syl2anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> E. x e. U `' v = ( x i^i ( A X. A ) ) ) |
| 131 |
|
elrest |
|- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) -> ( `' v e. ( U |`t ( A X. A ) ) <-> E. x e. U `' v = ( x i^i ( A X. A ) ) ) ) |
| 132 |
131
|
biimpar |
|- ( ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) /\ E. x e. U `' v = ( x i^i ( A X. A ) ) ) -> `' v e. ( U |`t ( A X. A ) ) ) |
| 133 |
87 119 130 132
|
syl21anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> `' v e. ( U |`t ( A X. A ) ) ) |
| 134 |
133 55
|
r19.29a |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> `' v e. ( U |`t ( A X. A ) ) ) |
| 135 |
|
simp-4l |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> U e. ( UnifOn ` X ) ) |
| 136 |
14
|
ad3antrrr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> ( A X. A ) e. _V ) |
| 137 |
|
simplr |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> x e. U ) |
| 138 |
|
elrestr |
|- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V /\ x e. U ) -> ( x i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
| 139 |
135 136 137 138
|
syl3anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> ( x i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
| 140 |
|
inss1 |
|- ( x i^i ( A X. A ) ) C_ x |
| 141 |
|
coss1 |
|- ( ( x i^i ( A X. A ) ) C_ x -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( x o. ( x i^i ( A X. A ) ) ) ) |
| 142 |
|
coss2 |
|- ( ( x i^i ( A X. A ) ) C_ x -> ( x o. ( x i^i ( A X. A ) ) ) C_ ( x o. x ) ) |
| 143 |
141 142
|
sstrd |
|- ( ( x i^i ( A X. A ) ) C_ x -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( x o. x ) ) |
| 144 |
140 143
|
ax-mp |
|- ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( x o. x ) |
| 145 |
|
sstr |
|- ( ( ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( x o. x ) /\ ( x o. x ) C_ u ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ u ) |
| 146 |
144 145
|
mpan |
|- ( ( x o. x ) C_ u -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ u ) |
| 147 |
146
|
adantl |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ u ) |
| 148 |
|
inss2 |
|- ( x i^i ( A X. A ) ) C_ ( A X. A ) |
| 149 |
|
coss1 |
|- ( ( x i^i ( A X. A ) ) C_ ( A X. A ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( ( A X. A ) o. ( x i^i ( A X. A ) ) ) ) |
| 150 |
|
coss2 |
|- ( ( x i^i ( A X. A ) ) C_ ( A X. A ) -> ( ( A X. A ) o. ( x i^i ( A X. A ) ) ) C_ ( ( A X. A ) o. ( A X. A ) ) ) |
| 151 |
149 150
|
sstrd |
|- ( ( x i^i ( A X. A ) ) C_ ( A X. A ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( ( A X. A ) o. ( A X. A ) ) ) |
| 152 |
148 151
|
ax-mp |
|- ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( ( A X. A ) o. ( A X. A ) ) |
| 153 |
|
xpidtr |
|- ( ( A X. A ) o. ( A X. A ) ) C_ ( A X. A ) |
| 154 |
152 153
|
sstri |
|- ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( A X. A ) |
| 155 |
154
|
a1i |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( A X. A ) ) |
| 156 |
147 155
|
ssind |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( u i^i ( A X. A ) ) ) |
| 157 |
|
id |
|- ( w = ( x i^i ( A X. A ) ) -> w = ( x i^i ( A X. A ) ) ) |
| 158 |
157 157
|
coeq12d |
|- ( w = ( x i^i ( A X. A ) ) -> ( w o. w ) = ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) ) |
| 159 |
158
|
sseq1d |
|- ( w = ( x i^i ( A X. A ) ) -> ( ( w o. w ) C_ ( u i^i ( A X. A ) ) <-> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( u i^i ( A X. A ) ) ) ) |
| 160 |
159
|
rspcev |
|- ( ( ( x i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) /\ ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( u i^i ( A X. A ) ) ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ ( u i^i ( A X. A ) ) ) |
| 161 |
139 156 160
|
syl2anc |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ ( u i^i ( A X. A ) ) ) |
| 162 |
|
ustexhalf |
|- ( ( U e. ( UnifOn ` X ) /\ u e. U ) -> E. x e. U ( x o. x ) C_ u ) |
| 163 |
162
|
adantlr |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) -> E. x e. U ( x o. x ) C_ u ) |
| 164 |
161 163
|
r19.29a |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ ( u i^i ( A X. A ) ) ) |
| 165 |
164
|
ad4ant13 |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ ( u i^i ( A X. A ) ) ) |
| 166 |
116
|
sseq2d |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( ( w o. w ) C_ v <-> ( w o. w ) C_ ( u i^i ( A X. A ) ) ) ) |
| 167 |
166
|
rexbidv |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v <-> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ ( u i^i ( A X. A ) ) ) ) |
| 168 |
165 167
|
mpbird |
|- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) |
| 169 |
168 55
|
r19.29a |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) |
| 170 |
118 134 169
|
3jca |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) |
| 171 |
59 86 170
|
3jca |
|- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> ( A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) /\ A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) /\ ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) ) |
| 172 |
171
|
ralrimiva |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A. v e. ( U |`t ( A X. A ) ) ( A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) /\ A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) /\ ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) ) |
| 173 |
2 19 172
|
3jca |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( U |`t ( A X. A ) ) C_ ~P ( A X. A ) /\ ( A X. A ) e. ( U |`t ( A X. A ) ) /\ A. v e. ( U |`t ( A X. A ) ) ( A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) /\ A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) /\ ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) ) ) |
| 174 |
|
isust |
|- ( A e. _V -> ( ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) <-> ( ( U |`t ( A X. A ) ) C_ ~P ( A X. A ) /\ ( A X. A ) e. ( U |`t ( A X. A ) ) /\ A. v e. ( U |`t ( A X. A ) ) ( A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) /\ A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) /\ ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) ) ) ) |
| 175 |
13 174
|
syl |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) <-> ( ( U |`t ( A X. A ) ) C_ ~P ( A X. A ) /\ ( A X. A ) e. ( U |`t ( A X. A ) ) /\ A. v e. ( U |`t ( A X. A ) ) ( A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) /\ A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) /\ ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) ) ) ) |
| 176 |
173 175
|
mpbird |
|- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |