Step |
Hyp |
Ref |
Expression |
1 |
|
resstopn.1 |
|- H = ( K |`s A ) |
2 |
|
resstopn.2 |
|- J = ( TopOpen ` K ) |
3 |
|
fvex |
|- ( TopSet ` K ) e. _V |
4 |
|
fvex |
|- ( Base ` K ) e. _V |
5 |
|
restco |
|- ( ( ( TopSet ` K ) e. _V /\ ( Base ` K ) e. _V /\ A e. _V ) -> ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( ( TopSet ` K ) |`t ( ( Base ` K ) i^i A ) ) ) |
6 |
3 4 5
|
mp3an12 |
|- ( A e. _V -> ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( ( TopSet ` K ) |`t ( ( Base ` K ) i^i A ) ) ) |
7 |
|
eqid |
|- ( TopSet ` K ) = ( TopSet ` K ) |
8 |
1 7
|
resstset |
|- ( A e. _V -> ( TopSet ` K ) = ( TopSet ` H ) ) |
9 |
|
incom |
|- ( ( Base ` K ) i^i A ) = ( A i^i ( Base ` K ) ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
1 10
|
ressbas |
|- ( A e. _V -> ( A i^i ( Base ` K ) ) = ( Base ` H ) ) |
12 |
9 11
|
syl5eq |
|- ( A e. _V -> ( ( Base ` K ) i^i A ) = ( Base ` H ) ) |
13 |
8 12
|
oveq12d |
|- ( A e. _V -> ( ( TopSet ` K ) |`t ( ( Base ` K ) i^i A ) ) = ( ( TopSet ` H ) |`t ( Base ` H ) ) ) |
14 |
6 13
|
eqtrd |
|- ( A e. _V -> ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( ( TopSet ` H ) |`t ( Base ` H ) ) ) |
15 |
10 7
|
topnval |
|- ( ( TopSet ` K ) |`t ( Base ` K ) ) = ( TopOpen ` K ) |
16 |
15 2
|
eqtr4i |
|- ( ( TopSet ` K ) |`t ( Base ` K ) ) = J |
17 |
16
|
oveq1i |
|- ( ( ( TopSet ` K ) |`t ( Base ` K ) ) |`t A ) = ( J |`t A ) |
18 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
19 |
|
eqid |
|- ( TopSet ` H ) = ( TopSet ` H ) |
20 |
18 19
|
topnval |
|- ( ( TopSet ` H ) |`t ( Base ` H ) ) = ( TopOpen ` H ) |
21 |
14 17 20
|
3eqtr3g |
|- ( A e. _V -> ( J |`t A ) = ( TopOpen ` H ) ) |
22 |
|
simpr |
|- ( ( J e. _V /\ A e. _V ) -> A e. _V ) |
23 |
|
restfn |
|- |`t Fn ( _V X. _V ) |
24 |
23
|
fndmi |
|- dom |`t = ( _V X. _V ) |
25 |
24
|
ndmov |
|- ( -. ( J e. _V /\ A e. _V ) -> ( J |`t A ) = (/) ) |
26 |
22 25
|
nsyl5 |
|- ( -. A e. _V -> ( J |`t A ) = (/) ) |
27 |
|
reldmress |
|- Rel dom |`s |
28 |
27
|
ovprc2 |
|- ( -. A e. _V -> ( K |`s A ) = (/) ) |
29 |
1 28
|
syl5eq |
|- ( -. A e. _V -> H = (/) ) |
30 |
29
|
fveq2d |
|- ( -. A e. _V -> ( TopSet ` H ) = ( TopSet ` (/) ) ) |
31 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
32 |
31
|
str0 |
|- (/) = ( TopSet ` (/) ) |
33 |
30 32
|
eqtr4di |
|- ( -. A e. _V -> ( TopSet ` H ) = (/) ) |
34 |
33
|
oveq1d |
|- ( -. A e. _V -> ( ( TopSet ` H ) |`t ( Base ` H ) ) = ( (/) |`t ( Base ` H ) ) ) |
35 |
|
0rest |
|- ( (/) |`t ( Base ` H ) ) = (/) |
36 |
34 20 35
|
3eqtr3g |
|- ( -. A e. _V -> ( TopOpen ` H ) = (/) ) |
37 |
26 36
|
eqtr4d |
|- ( -. A e. _V -> ( J |`t A ) = ( TopOpen ` H ) ) |
38 |
21 37
|
pm2.61i |
|- ( J |`t A ) = ( TopOpen ` H ) |